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HIGH STRAIN RATE PROPERTIES OF UNIDIRECTIONAL COMPOSITES

ABSTRACT

Experimental methods were developed for testing and character_'zation of

composite materials at strain rates ranging from quasi-static to over 500s -I .

Three materials were characterized, two graphite/epoxies and a graphite/S-glass/

epoxy. Properties were obtained by testing thin rings lO.16 cm (4 in.) in

diameter, 2.54 cm (l in.) wide, and 6 to 8 plies thick under internal pressure.

Unidirectional O-deg, 90-deg, and lO-deg off-axis rings were tested to obtain

longitudinal, transverse, and in-plane shear properties. In the dynamic tests

internal pressure was applied explosively through a liquid and the pressure was

measured with a calibrated steel ring. Strains in the calibration and specimen

rings were recorded with a digital processing oscilloscope. The data were pro-

cessed and the equation of motion solved numerically by the mini-computer

attached to the oscilloscope. Results were obtained and plotted in the form

of dynamic stress-strain curves. Longitudinal properties which are governed

by the fibers do not vary much with strain rate with only a moderate (up to

20%) increase in modulus. Transverse modulus and strength increase sharply

with strain rate reaching values up to three times the static value. The in-

plane shear modulus and shear strength increase noticeably with strain rate by

up to approximately 65%. In all cases ultimate strains do not vary signifi-

cantly with strain rate.
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HIGH STRAIN RATE PROPERTIES OF COMPOSITES

1 . INTRODUCTION

Some applications of composite materials involve dynamically loaded

components and structures. For example, composite jet engine blades are

exposed to the hazards of foreign object damage, such as bird impact on

rotating blades. Such impacts occur at velocities up to 305 ms"I (I000 ft/sec)

and can cause extensive damage to the composite blade. Similarly, in appli-

cations to protective armor or other components, composites are subject to

high velocity impacts. These impact loadings are of short duration of the

order of I00 _s, and produce stress (strain) wave pulses with strain rates

up to a few hundred (m/m) per second. The application of composites to such

dynamically loaded structures requires knowledge and understanding of the

dynamic loading, induced wave propagation phenomena, and the response of the

material to the high strain rates produced. Reliable design of composite

components for impact resistance requires characterization of the composite

material at high strain rates.

Most composite materials have been amply characterized under quasi-

static conditions. Related work under dynamic conditions has been limited.

Early attempts were limited to the determination of elastic constants by

ultrasonic velocity measurements and vibration testing. I'3 In the few cases

investigated it was reported that composite stiffnesses were not greatly

affected by strain rate. In the case of complex moduli, the loss modulus was

found to be much more sensitive to frequency (strain rate) than the storage
modulus.

Testing of composites at high strain rates has been described by Rotem

and Lifshitz, 4,5 Armenakas and Sciammarella,6 and Daniel and Liber.7'8 The

former investigated unidirectional and angle-ply E-glass/epoxy laminates under

dynamic tensile loading. They achieved strain rates up to 30s -I using an

instrumented falling weight apparatus. In their first study of O-deg unidi-

rectional E-glass/epoxy they found dynamic strength values of almost three

times the static values and a dynamic modulus approximately 50 percent higher
4

than the static. They also found that the ultimate strain was not affected

much by strain rate. In a later study with angle-ply laminates, Lifshitz
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found that the initial moduluswas unaffected by strain rate and that the

dynamic tensile strength was higher than the static, but only by approximately
5

20 to 30 percent.
6

Armenakasand Sciammarella studied the response of O-degunidirectional

glass/epoxy specimensat strain rates up to 500s"I using an explosively driven

testing system. The material they tested wasa very low fiber-volume composite

prepared in the laboratory. They found a linear variation of the moduluswith
the logarithm of the strain rate. The ultimate strain, however, decreased with
increasing strain rate. The latter is in total contradiction with the results

4
of Rotemand Lifshitz.

Daniel and Liber conducted an experimental investigation to determine the

strain rate effects in unidirectional composite specimensof boron/epoxy,

graphite/epoxy, S-glass/epoxy, and Kevlar 49/epoxy.7'8 Strain rates up to
27s-I were achieved using an electrohydraulic system. Longitudinal, transverse,

and in-plane shear properties, including modulus, Poisson's ratio, strength,
and ultimate strain, were determined by testing 0-, 90-, and lO-deg unidirec-

tional coupons. The O-deg properties which are governed by the fibers did not
vary muchwith strain rate except for the Kevlar 49/epoxy material. The strain
rate effects on 90-deg properties were also small. The most noticeable effect

of strain rate wason in-plane shear properties with shear strength values at

high strain rates approximately 15 percent higher than static values.

Compressiveproperties of composites (steel-wire reinforced epoxy) were
-I

studied by Sierakowski et al. at strain rates up to lO00s using a split
Hopkinsonbar. 9 The failure modesat the high strain rates were significantly
different from those at lower rates. The initial modulus remained unaffected

by strain rate, but the strength increased by as muchas I00 percent at the
higher rates. The fact that the failure modeswere significantly different at

high strain rates may be partly due to the multiaxial states of stress induced

in the short cylindrical specimensby the Hopkinsonbar.

A variety of testing techniques and procedures have been developed for
testing materials at high rates of loading. Different methodsare suited for

different ranges of strain rate. A diagram illustrating the various basic
methodsand the corresponding strain rate regimes is shownin Figure Io The
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lowest strain rate region is associated with creep where a constant load is

applied and the strain variation with time is recorded. The quasi-static

region corresponds to strain rates up to O.Is "I. Standard hydraulic or screw

machines such as the Instron are used to apply loads to coupons at a constant
strain rate.

In the intermediate strain-rate region for strain rates up to approximately

50s -I fast-acting hydraulic or pneumatic machines are used. One such machine

was the electrohydraulic system used by Daniel and Liber in their recent work

on high-rate testing of composites 7 An MTS electrohydraulic closed-loop

system capable of delivering a wide range of input pulses at velocities up to

5.1 ms-I (12,000 in./min) was used° It was augmented with specially designed

fixtures to make its performance conform to the test requirements• In this

range of strain rates inertia forces begin to become important and possible

mechanical resonances must be taken into account. Similar intermediate strain

rates have been applied by falling weight apparatus such as the one used by
Rotem and Lifshitz 4

In this medium regime wave propagation effects are neglected and uniform

stresses and strains are assumed in the test specimen. Load is normally

measured with a load cell connected in series with the specimen. Strain gages

on the specimen are recorded on oscilloscopes or tape recorders.

Higher strain rates, primarily in compression, can be obtained with

mechanical impact from a fast moving mass or by explosively generated pulses.

In the highest strain-rate regime wave propagation effects become very dominant

and must be accounted for. This fact leads to many difficulties and causes a

great deal of uncertainty on the interpretation of results. For this reason

the scant data available in this high strain rate region is of doubtful validity.

To overcome the difficulties associated with wave propagation effects a

new method for testing composites at high strain rates was developed and has

been described recently in the literature. II The method utilizes a thin ring

specimen loaded with a dynamic pressure pulse• The transit time of the stress

wave across the thickness of the specimen is very short compared to the duration
of the test.
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The objective of the present investigation is to characterize unidirec-

tional and angle-ply composite laminates over a wide range of strain rates.

The program consists of the following tasks:

Task l - Test Planning and Specimen Preparation

The objective of this task is to develop test procedures, procure the

material, and prepare the specimens.

Task 2 - Strain Rate Characterization of Unidirectional Composites

The objective of this task is to determine longitudinal, transverse, and

in-plane shear properties of three unidirectional composite materials at three

different strain rates°

Task 3 - Strain Rate Characterization of Off-Axis Laminates

The objective of this task is to characterize unidirectional composites

of two material systems in uniaxial tension at various angles with the fiber

direction at three strain rates.

Task 4 - Strain Rate Characterization of Angle-Ply Laminates

The objective of this task is to characterize angle-ply laminates of two

material systems in uniaxial tension at three strain rates.
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2. TEST PLANNING AND SPECIMEN PREPARATION

2.1 MATERIAL PROCUREMENTAND QUALIFICATION

The materials selected for characterization are the following:

(I) SP288T300 graphite/epoxy

(2) SP288/AS graphite/epoxy

(3) 80AS/20S/PR288 graphite/S-glass/epoxy
(Intraply hybrid with 80 percent AS fiber
composite and 20 percent S-glass fiber
composite).

These materials consist of Thornell 300 graphite, AS graphite, and S-glass

fibers impregnated with PR-288 epoxy resin made by the 3M Company. The

material was obtained in the form of 30.5 cm (12 in.) wide and 0.13 mm (0.005

ino) thick prepreg tape. The intraply hybrid prepreg consists of approximately

0.32 cm (0.125 in.) wide strips of S-glass interspersed between the AS graphite

prepreg with a spacing of approximately 1.59 cm (0.625 in.).

The prepreg materials above were cured according to the following curing
cycle:

(I) Apply full vacuum to bagged layup

(2) Pressurize autoclave to 587 kPa (85 psi)

(3) Heat up to 400°K (260°F) at a rate of 2.8°K
(5°F) per minute and hold for 4 hours

(4) Allow to cool to room temperature, release
vacuum and pressure, and remove from autoclave.

Plates 15.2 cm x 15.2 cm (6 in. x 6 in.) and 15-plies thick were fabricated

for qualification testing. Flexural strength coupons were 10.2 cm (4 in.)

long, 1.3 cm (0.5 in.) wide with a 6.3 cm (2.5 in.) span length. Interlaminar

shear strength coupons were 1.5 cm (0.6 in.) long, 0.6 cm (0.25 in.) wide and

had a 1 cm (0.4 in.) span length. These specimens were subjected to three-

point bending. Results of these qualification tests are tabulated in Tables
2-I and 2-2,
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TABLE2-I. QUALIFICATIONFLEXURETESTSFORGRAPHITE/EPOXYSP288/T300

Specimen Thickness, Width, Flexural Strength,
Number cm (in.) cm (in.) MPa (ksi)

1 0.188 (0.074) 1.270 (0.500) 1616 (234)

2 0o193 (0.076) 1.265 (0.498) 1610 (233)

3 0.190 (0.075) 1.265 (0.498) 1746 (253)

4 0.193 (0.076) 1.265 (0.498) 1799 (261)

5 0.190 (0.075) 1.267 (0.499) 1770 (257)

Average: 1708 (248)

TABLE 2-2. QUALIFICATION INTERLAMINAR SHEAR TESTS FOR GRAPHITE/EPOXY SP288/T300

Specimen Thickness, Width, Shear Strength,
Number cm (in.) cm (in.) MPa (ksi)

1 0.182 (0.073) 0.635 (0.250) 94.9 (13.8)

2 0.193 (0.076) 0.627 (0.247) 98.9 (14.3)

3 0o191 (0.075) 0.624 (0.246) I00.I (14.5)

4 0.191 (0.075) 0.622 (0.245) 98.0 (14.2)

5 0.188 (0.074) 0.627 (0.247) 106.9 (15.5)

6 0.191 (0.075) 0.635 (0.250) 105.6 (15.3)

Average: 100.7 (14.6)

The results above were judged satisfactory since they compare favorably

with similar data from the manufacturer.

Qualification test results for the SP288/AS graphite/epoxy are tabulated

in Tables 2-3 and 2-4.
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TABLE2-3. QUALIFICATIONFLEXURETESTSFORGRAPHITE/EPOXYSP288/AS

Specimen Thickness, Width, Flexural Strength,
Number cm (in.) cm (in.) MPa (ksi)

1 0.183 (0.072) 1.257 (0.495) 1755 (254)

2 0.191 (0.075) 1.262 (0.497) 1583 (229)

3 0.196 (0.077) 1.267 (0.499) 1592 (231)

4 0.193 (0.076) 1.265 (0.498) 1637 (237)

5 0.196 (0.077) 1.267 (0.499) 1565 (227)

6 0.196 (0.077) 1.257 (0.495) 1613 (234)

Average: 1624 (235)

TABLE 2-4. QUALIFICATION INTERLAMINAR SHEAR TESTS FOR GRAPHITE/EPOXY SP288/AS

Specimen Thickness, Width, Shear Strength,
Number _ cm (in.) cm (in.) MPa (ksi)

1 0.196 (0.077) 0.632 (0.249) 102.6 (14.9)

2 0.191 (0.075) 0.635 (0.250) 95.5 (13.8)

3 0.196 (0.077) 0.635 (0.250) 87.9 (12.7)

4 0.193 (0.076) 0.632 (0.249) 91.1 (13.2)

5 0.196 (0.077) 0.630 (0.248) 108.4 (15.7)

6 0.193 (0.076) 0.635 (0.250) 97.2 (14.1)

Average: 97.1 (14.1)

The results above are very similar to those for the SP288/T300 material.

Qualification test results for the 80AS/20S/PR288 intra-ply hybrid are
tabulated in Tables 2-5 and 2-6.
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TABLE2-5. QUALIFICATIONFLEXURETESTSFORGRAPHITE/S-GLASS/EPOXY80AS/20S/PR288

Specimen Thickness, Width, Flexural Strength,
Number cm (in.) cm (in.) MPa (ksi)

1 0.198 (0.078) 1.265 (0.498) 1255 (182)

2 0.188 (0.074) Io260 (0.496) 1543 (224)

3 0.188 (0.074) 1.257 (0.495) 1403 (203)

4 0.193 (0.076) 1.265 (0.498i 1268 (184)

5 0.188 (0.074) 1.265 (0.498) 1376 (199)

Average: 1369 (198)

TABLE 2-6. QUALIFICATION INTERLAMINAR SHEAR TESTS FOR
GRAPHITE/S-GLASS/EPOXY 80AS/20S/PR288

Specimen Thickness, Width, Shear Strength,
Number cm (in.) cm (in.) MPa (ksi)

1 0.180 (0.071) 0.632 (0.249) 67.3 (9.6)

2 0.183 (0.072) 0.632 (0.249) 68.7 (I0.0)

3 0.185 (0.073) 0.632 (0.249) 71.2 (10.3)

4 0.188 (0.074) 0.635 (0.250) 65.7 (9.5)

5 0.183 (0.072) 0.630 (0.248) 69.6 (I0.I)

6 0.180 (0.071) 0.635 (0.250) 72.9 (10.6)

Average: 69.2 (I0.0)

No data were available from the manufacturer for comparison with the

results above. However, the flexural strength seems to be somewhat lower

than expected and the interlaminar shear strength falls between the values

obtained for all-graphite and all-glass specimens.
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2.2 PRELIMINARY MATERIAL CHARACTERIZATION

The three materials received were fully characterized under static loading

conditions. The properties obtained were unidirectional tensile and compressive

properties in the fiber and transverse-to-the-fiber directions and intralaminar

shear properties. Results of these tests were subsequently compared with those

of quasi-static tests using ring specimens to demonstrate the equivalence of

coupon and ring specimens under quasi-static conditions.

Unidirectional O-deg tensile properties were obtained by testing 2.54 cm

x 22.9 cm (l in. x 9 in.) 6-ply coupons. Two specimens of each, instrumented

with 2-gage rosettes on each side, were tested. Typical stress-strain curves

as well as modulus, Poisson's ratio, strength, and ultimate strain are shown in

Figures 2-I to 2-6. Strains are linear up to approximately 860 MPa (125 ksi);

thereafter, an apparent stiffening of the specimen occurs. The graphite/epoxy

with T300 fibers is stiffer and stronger than that with AS fibers which in turn

is stiffer and stronger than the graphite/S-glass/epoxy hybrid.

Unidirectional 90-deg tensile properties were obtained by testing 2.54 cm

x 22.9 cm (l in. x 9 in.) 8-ply coupons. Two specimens of each, instrumented

with 2-gage rosettes on each side, were tested. Typical stress-strain curves

as well as modulus, Poisson's ratio, strength, and ultimate strain are shown in

Figures 2-7 to 2-12. Strains are linear up to approximately 30 MPa (4.5 ksi)

corresponding to axial strains of less than 0.003. The graphite/epoxy with

T300 fibers is stiffer and stronger than that with AS fibers which in turn is

stronger than the graphite/S-glass/epoxy hybrid.

Compressive properties were obtained using the IITRI-designed compression

test fixture which represents an improved modification of the Celanese fixture.

The IITRI fixture uses trapezoidal wedges as opposed to the conical grips of

the Celanese fixture. The trapezoidal wedges permit surface-to-surface contact

at all positions and apply lateral compression to the specimen tabs to prevent

slippage. The longitudinal coupons were 13.5 cm x 0.64 cm (5.3 in. x 0.25 in.)

and 15-plies thick with a gage length of 9.5 mm (0.375 ino). The transverse

coupons were 15-plies thick and had a gage length of 6.4 mm (I/4 in.). The

gage sections of these specimens were instrumented with axial gages on both

sides, primarily to monitor strains during loading and confirm the axiality of
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compressive loading up to failure. Three specimens of each type and each

material were tested. Stress-strain curves to failure for the unidirectional

compressive specimens are shown in Figures 2-13 to 2-30. Also shown in these

figures are the modulus, strength, and ultimate strain obtained from these

data. Both O-deg and 90-deg specimens show nonlinear behavior not associated

with buckling. The O-deg graphite/epoxy specimens show a modulus somewhat

lower than that obtained from tensile specimens, but this difference may not

be significant. The hybrid 0-deg specimens on the other hand show a somewhat

higher modulus in compression. The 0-deg compressive strength is lower than

the tensile strength, but this difference is smaller in the case of the hybrid

specimens. The compressive modulus for the 90-deg specimens is lower than the

tensile modulus for the SP288/T300 material, but higher for the SP288/AS and

the hybrid materials. The compressive 90-deg strength is much higher than the

transverse tensile strength for all three materials. The two graphite/epoxy

materials have higher transverse compressive strength than the hybrid material.

In-plane shear properties were determined by testing lO-deg off-axis uni-

directional specimens, 1.27 cm (0.50 in.) wide, 6-ply thick, and 25.4 cm

(lO in.) long. Four specimens of each material were tested. Two specimens of

each material were instrumented with 3-gage rosettes on each side. Shear

stress and shear strain computed from the measured data are plotted in Figures

2-31 to 2-36. The in-plane shear modulus, shear strength, and ultimate shear

strain are also shown in these figures.

Results from all the characterization tests above for the three materials

tested are summarized in Tables 2-7, 2-8, and 2-9.

2.3 LAMINATE FABRICATION

The specimen geometry selected was a ring lO.16 cm (4 in.) in diameter,

2.54 cm (l in.) wide, and 6 to 8 plies thick. The thin-wall ring specimen
12-15

under internal pressure is equivalent to a uniaxially loaded flat coupon.

The rings are tabless specimens and as such they are free from end constraints.

This presents an important advantage over tabbed flat coupons for the deter-

mination of off-axis and shear properties of unidirectional composites,

because uniform shear deformations can be developed throughout the specimen.
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TABLE 2-7. PROPERTIES OF UNIDIRECTIONAL GRAPHITE/EPOXY SP288/T300

Property

Ply Thickness

Longitudinal Modulus, Eli

Transverse Modulus, E22

Shear Modulus, G12

Major Poisson's Ratio, v12

Minor Poisson's Ratio, v21

Longitudinal Tensile Strength, Sii T

u
Ultimate Longitudinal Tensile Strain, _IIT

Longitudinal Compressive Strength, Sll C

Ultimate Longitudinal Compressive
Strain, _IIC

Transverse Tensile Strength, $22 T

u
Ultimate Transverse Tensile Strain, _22T

Transverse Compressive Strength, $22 c

Ultimate Transverse Compressive
Strain, _2_C

In-plane Shear Strength, S12

u
Ultimate Shear Strain, El2

Value

0.127 mm (0.0050 in.)

145 GPa (21.1 x 106 psi)

11.4 GPa (1.66 x 106 psi)

6.6 GPa (0.95 x 106 psi)

0.30

0.017

1656 !4.9a (240 ksi)

0.01133

1297 MPa (188 ksi)

0.01142

71 MPa (10.3 ksi)

0.00660

251 MPa (36 ksi)

0.03365

73 MPa (10.7 ksi)

0.00935
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b TABLE 2-8. PROPERTIES OF UNIDIRECTIONAL GRAPHITE/EPOXY SP288/AS

•ili

Property

Ply Thickness

Longitudinal Modulus, Ell

Transverse Modulus, E22

Shear Modulus, G12

Major Poisson's Ratio, _12

Minor Poisson's Ratio, _21

Longitudinal Tensile Strength, SllT

u
Ultimate Longitudinal Tensile Strain, _lIT

Longitudinal Compressive Strength, SllC

Ultimate Longitudinal Compressive

Strain, _i uIC

Transverse Tensile Strength, $22 T
u

Ultimate Transverse Tensile Strain, _22T

Transverse Compressive Strength, S22C

Ultimate Transverse Compressive
u

Strain, _22C

In-plane Shear Strength, SI2
u

Ultimate Shear Strain, _12

Value

0.130 mm (0.0051 in.)

137 GPa (19.9 x 106 psi)

10.4 GPa (1.51 x lO 6 psi)

6°3 GPa (0.91 x 106 psi)

0.32

0.01 6

1518 MPa (220 ksi)

0. Ol 080

1235 MPa (179 ksi)

0.01080

64 MPa (9.3 ksi)

0.00660

244 MPa (35 ksi)

0.03175

79 MPa (11.5 ksi)

0.0153
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TABLE2-9. PROPERTIESOFUNIDIRECTIONAL
GRAPHITE/S-GLASS/EPOXY80AS/20S/PR288

Property

Ply Thickness

Longitudinal Modulus, Eli

Transverse Modulus, E22

Shear Modulus, GI2

Major Poisson's Ratio, _12

Minor Poisson's Ratio, _21

Longitudinal Tensile Strength, Sii T
u

Ultimate Longitudinal Tensile Strain, Cll T

Longitudinal CompressiveStrength, Sll C

Ultimate Longitudinal Compressive
Strain, _IYC

Transverse Tensile Strength, $22T
u

Ultimate Transverse Tensile Strain, _22T

Transverse CompressiveStrength, $22C

Ultimate Transverse Compressive
Strain, c2_C

In-plane Shear Strength, SI2
u

Ultimate Shear Strain, _12

Value

0.134 mm(0.0053 in.)

107 GPa(15,5 x 106 psi)

11.5 GPa(1.67 x 106 psi)

6.2 GPa(0.90 x 106 psi)

0.30

0.027

1290 MPa(187 ksi)

0.O1163

1189MPa(172 ksi)

0.01187

42 MPa(6.2 ksi)

0.00394

166 MPa(24 ksi)

0.01567

61 MPa(8.9 ksi)

0.00940
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The same advantage applies to testing off-axis, angle-ply laminates for the

determination of biaxial properties and failure envelopes over a limited range

of biaxiality. 13 The ring specimen also has unique advantages in the deter-

mination of high strain rate properties of laminates° It needs no grips for

internal pressure loading and thus it avoids the dynamic problems associated

with tab and grip accelerations in flat coupon tests. Furthermore, it mini-

_mizes wave propagation effects as the transit time of the stress wave through

the thickness of the ring is much shorter than the duration of the test.

Composite rings are normally cut from longer composite tubes. Composite

tubes can be fabricated in any desired ply orientation and stacking

12,13,15-17
sequence. The method of tube fabrication employed at the lIT

Research Institute consists of laying up the various plies around a cylindrical

mandrel and then expanding the layup, by means of internal pressure, against

the wall of a mold toolo

The tube fabrication mold is shown in Figure 2-37. It consists of a

perforated hollow stainless steel mandrel, a silicon rubber sleeve or bladder,

two thin aluminum cylinders, two rings, two flanged cylinders, and the two

outer valves forming the cylindrical mold cavity. The mold has a lO.16 cm

(4 in.) cavity diameter and can be used to make composite tubes of lO.16 cm

(4 in.) outer diameter and up to 50.8 cm (20 in.) in length. Tubes of up to

12-ply wall thickness have been fabricated with this tool. The prepreg layup

process is quite similar to that used in laying up flat laminates, but is more

exacting and requires greater care and close dimensional control.

Figure 2-38 shows a sketch of the consecutive layers of materials around

the central steel mandrel required for the layup and fabrication process. The

mandrel is hollow and perforated, allowing the rubber bladder that surrounds it

to be pressurized by means of air which is fed into the mandrel during the

curing stage through an air inlet at one end of the mandrel. Since the bladder

is sealed off at both ends by means of O-rings, it forms an expandable pressure

envelope which under internal pressure forces the layup toward the cavity wall

of the external mold when the fabrication tool is assembled. The steps of

the layup and fabrication process are as follows:
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(i)

(2)

(3)

(4)

(5)

(6)

The thickness of all materials used in the
layup process is measured, starting with the
rubber bladder and ending with the teflon film.

The silicon rubber bladder (2.5 mm; 0.I00 in.
thick) is placed over the steel mandrel. The
diameter of this assembly is measured and to
this value is added twice the sum of the thick-
nesses of all subsequent material layers. The
final diameter of the complete layup should be
approximately 0.127 mm (0.005 in.) smaller than
the inside diameter of the external mold shown
in Figure 2-37. It is important that the total
layup be within this tolerance. Otherwise it

will have to be forced into the mold causing
wrinkling of the prepreg plies.

A layer of 181 glass vent cloth is wrapped
spirally over the silicon rubber sleeve. This
layer is usually made of a 7.6 cm to 10.2 cm
(3 in. to 4 in.) wide strip. Care must be
taken to wrap this layer as tight as possible
and to avoid gaps, overlaps, or wrinkles. The
vent cloth must extend on the mandrel beyond
the location of the vacuum parts in the upper
half of the external mold. The ends of the
vent cloth are taped to prevent unwinding.

A 0.025 mm (0.001 in.) thick teflon film
separator is wrapped over the vent cloth.
This film is cut 7.6 cm to 10.2 cm (3 in. to
4 in.) wider than the length of the tube to
be fabricated and is perforated on 5 cm (2 in.)
centers with a small needle. The perforations
permit transpiration of air and gases into the
vent cloth. The separator is wrapped circum-
ferentially around the vent cloth and taped
in place.

A layer of 181 glass bleeder cloth is then
wrapped spirally in the same manner as the vent
cloth. The bleeder extends only approximately
2.5 cm (I in.) beyond the length of the tube to
be fabricated°

A layer of TXI040 separator (teflon coated glass
scrim cloth) is wrapped over the bleeder cloth
and taped in place. This open weave separator
should be somewhat longer than the tube to be
fabricated. Its function is to facilitate the
removal of the bleeder cloth from the tube after
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(7)

(8)

(9)

completion of the cure cycle. The open weave

permits resin flow into the bleeder, and the
teflon coating prevents the bleeder from bonding

to the composite tube.

The individual plies of the prepreg material,

precut and layed out on a carrier template of
teflon-coated glass cloth, are then wrapped

around tightly. Gaps or overlaps are avoided,

but if they do occur, care is taken to fill or
trim them as required. The one exception is

the ply with circumferentially oriented fibers.
Here the ply ends should overlap approximately

2.5 cm (l ino), because, using butting ends
would reduce the strength of the composite along
the butt line. Consecutive plies with circum-

ferential fiber orientation are wrapped con-

tinuously around each other with the end of the

final ply overlapping the starting end by
approximately 2.5 cm (l in.).

Figure 2-39 shows the system for wrapping the
prepreg plies on the tube layup mandrel. It
consists of an assembly of two free rolling
rollers which cradle the mandrel, and a carrier

template used to align and guide the Drepreg
ply between the rollers and the mandrel. The
carrier has reference marks on it for this

purpose.

The carrier template is placed on the flat

layup table and the precut prepreg ply placed
on the template with the fiber orientation

aligned with the appropriate marks on the carrier.
The carrier is aligned with the mandrel and its

front end is passed between the mandrel and the

rollers as shown in Figure 2-39. The carrier is

pulled slowly through the roller system while
simultaneously the prepreg is peeled off the

carrier and wrapped around the mandrel. This
should be done very carefully so that the wrapping

is tight and does not wrinkle or shift the fibers

of the previous ply.

The separator and bleeder cloth which extends

beyond the prepreg is then trimmed to prevent
excessive resin flow from the end of the tube.

The ends of the prepreg tube are taped to the

separator layer with high temperature tape. The
tape forms a dam, preventing axial fiber wash

from the prepreg tube.
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(10) The final layup is then wrapped with a 0.025 mm
(0.001 in.) thick layer of teflon film. This
aids in assembling the two halves of the external
mold over the mandrel and prevents the chance
of pinching fibers between the two halves of
the mold. Care must be taken to prevent this
film from covering the vacuum ports in the upper
hal f of the mold.

(11) 0-rings are inserted over the ends of the mandrel
under the rubber sleeve and pushed against the
shoulders of the mandrel. The thin aluminum
cylinders are inserted over the ends of the

mandrel under the rubber sleeve and pushed against
the 0-ringso

(12) The mandrel with the layup is inserted in the
cavity formed by the two outer halves of the
mold which are then bolted together. The end
rings and flanged cylinders are inserted at the
ends and bolted to the ends of the mold. These
flanged cylinders press the rings which press
the 0-rings to insure complete sealing of the
bladder for internal pressurization.

(13) The whole assembly is finally placed in the
oven, and the high pressure air and vacuum
lines are attached and the recommended curing
cycle is applied (Figure 2-40). The recommended
pressurization schedule given for flat laminates
should be modified since additional pressure is
needed to expand the tube against the walls of
the mold cavity. When the ply fibers are oriented
axially or at an angle of up to approximately
±45-degrees with the axis, a pressure of between
550 to 690 kPa (80 to I00 psi) is sufficient for
the radial expansion of the layup. When the
fiber directions tend toward the hoop orientation
pressures of 1380 to 2070 kPa (200 to 300 psi)
may be necessary.

The fabrication of tubes with the fibers in the circumferential direction,

[06], requires special care. They are normally laid up by wrapping a con-

tinuous length of prepreg tape around the mandrel. The end of the tape is

extended by a distance of approximately 2.5 cm (I in.) beyond the beginning
of the tape on the inside surface of the tube.
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The following curing procedure was adopted for these tubes:

(I) The temperature was raised to 353°K (175°F)
at a rate of 2.8°K (5°F) per minute and held
for 3 hours.

(2) Vacuumwas drawn 45 minutes after reaching
353°K (175°F).

(3) A pressure of 2070 kPa (300 psi) was applied
1 hour after reaching 353°K (175°F).

(4) The temperature was raised to 408°K (275°F)

at a rate of 2.8°K (5°F) per minute and held

for 4 hours.

(5) The mold was allowed to cool to room temperature.

(6) The laminate was removed and postcured at 408°K
(275°F) for 2 hours.

In the case of [06 ] graphite/S-glass/epoxy material, the tube was made by

wrapping the prepreg in two staggered segments, so that the glass strips in

the prepreg would not be concentrated and stacked on each other. Testing of

ring specimens cut from this tube showed that best results could be obtained

when the glass strips in the hybrid ring are nearly symmetrically disposed

about the transverse plane of symmetry (normal to the axis) of the ring.

In general, ring specimens cut from [06 ] tubes showed a tendency for

premature failures near the outer end of the wrap. Subsequently, this area

was reinforced with a patch of resin-impregnated glass cloth (No. 181) prior

to cutting the tube into rings.

2.4 QUALITY ASSESSMENT

After fabrication the tube quality was assessed in three different ways_

by ultrasonic inspection, by measuring the tube thickness at various points

along its length and around the circumference, and by measuring the hoop

strength of rings cut from the ends and loaded under internal pressure.

The ultrasonic inspection is done to reveal any internal flaws such as

delaminations, large voids, and excessive nonuniform fiber distribution. A

fixture was designed for holding these tubes and rotating them in an immersion
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tank for scanning along closely spaced cylinder generators (Figure 2-41). The

ultrasonic scanning system for inspecting composite tubes has been described

previously. 18

The method used is immersion ultrasonics where the tube is placed in a

water tank and the scanning is done with a single focused transducer in the

pulse-echo mode. The tube is positioned in the tank vertically in a ring

holder which is driven rotationally about the tube axis by means of a stepper

motor. The motor drives the tube in indexed steps, and at each step an ultra-

sonic line scan is performed axially along the tube wall. By selecting small

indexing steps the whole tube wall can be covered with line scans. The series

of lines is recorded on a graph using the pen-lift method. In this method the

pen draws a line where the mateerial is good and is lifted from the graph

where the ultrasonic signal indicates a flaw. Figure 2-42 shows examples of

such C-scans of graphite/epoxy tubes° The unacceptable tube shows patches of

interrupted lines.

The second method used in assessing tube quality is to measure the varia-

tion of the tube wall thickness at various points on the tube wall to check if

it is within acceptable tolerances. Figure 2-43 shows the fixture used for

this purpose. It consists of a stand with two long parallel feeler arms. The

lower one is the feeler arm for the inner surface of the tube. Its front end

is equipped with a small steel ball which allows it to make a satisfactory

point contact with the inner contour of the tube. The upper arm is equipped

with a micrometer dial gage whose measuring stem is positioned over the center

of the steel ball of the lower arm. The tube wall thickness at any point on

the tube is determined by reading the dial gage while the tube wall is passed

between the ball and the measuring stem of the gage.

Tube quality is further assessed by checking the hoop strength of ring

specimens cut from the ends of the tube. The procedures for cutting and testing

such uninstrumented specimens is the same as for instrumented ring specimens

used in determining material strength, stiffness, and ultimate strain. These

will be described in following sections.
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2.5 SPECIMEN PREPARATION

The specimens selected for quasi-static and dynamic characterization of

the composite laminates used in this program were 2.54 cm (l in.) wide rings

cut from the tubes described before. The cutting is done on a lathe. Since

the tube is thin walled, it must be supported internally during cutting, and

the support must be of a material which permits the cutoff blade to penetrate

into it without damage to the blade. Figure 2-4_ shows the support fixture

used in the ring cutoff operation° The core of the fixture is a circular

steel mandrel covered with a rubber sleeve. In this particular case it con-

sists of a spare tube layup mandrel and rubber bladder similar to those shown

in Figures 2-37 and 2-38. This arrangement brings the diameter of the cutoff

mandrel close to the inner diameter of the tube, and the rubber bladder provides

the backup material into which the cutoff blade can penetrate without damage.

Foam rubber strips were taped axially to the rubber bladder and the laminate

tube was slipped over them on the mandrel. The strips serve to take up the

radial space between the rubber bladder and the laminate tube and serve also

to center the tube over the cutoff mandrel. The ends of the laminate tube

were taped to the bladder with masking tape.

Before a composite laminate tube is cut into ring specimens, its ends are

trimmed by cutting off at least 1.27 cm (0.5 in.) wide rings from both ends of

the tube. To cut ring specimens the mandrel with the laminate tube was mounted

in a lathe as shown in Figure 2-45, and rotated by the lathe at moderate speed

on its axis. An independently powered circular diamond cutoff blade spinning

at high speed, was guided radially into contact with the rotating tube, at the

desired location for the cut, and was fed radially into the tube wall until

the wall was cut through. Successive cuts, spaced at specimen width distances,

produce the desired ring specimens.
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Figure 2-2. Strains in O-deg unidirectional SP288/T300 specimen under uniaxial
tensile loading.
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Figure 2-42. Typical ultrasonic C-scans of acceptable and

unacceptable [06] graphite/epoxy (SP288/T300) tubes.
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3. TEST METHOD DEVELOPMENT

3.1 PRELIMINARY TESTING

Preliminary testing to establish test methods and procedures was conducted

using metallic and composite ring specimens. These were mounted between two

thick rigid metal disks held together with bolts and forming with the specimen

a cylindrical vessel. In one configuration used, one of the disks was perfor-

ated and connected to a cylinder with a piston. The cavity between the disks

and the cylinder was filled with fluid (a solution of water and water-soluble

oil). The piston was loaded dynamically to produce a pressure surge in the

liquid to load the ring specimens dynamically. The liquid pressure was measured

with a piezoelectric transducer and the specimen deformation was measured with

strain gages mounted on the specimen.

All strain gage and transducer data were recorded with a four channel

digital processing oscilloscope (Norland 2001A Waveform and Data Analysis

System). It has sampling rates as fast as one point per microsecond. It is

equipped with a minicomputer and Flexible Disk Memory (floppy disk) for storage

and retrieval of data and keyboard programs. The storage capacity of the

floppy disk is 99 plies (array, register, or program files). Any signal that

is recorded or processed by the oscilloscope or stored in the floppy disk can

be plotted to any desired scale by an X-Y point plotter connected to the

oscilloscope.

In the first series of tests graphite/epoxy rings of [902/±45]s layup were

used. Pressure and strain signals for such a specimen are shown in Figure 3-I.

A peak strain of approximately 5400 _ was reached in 800 _sec at an initial

strain rate of 8 _/sec. This is approximately two orders of magnitude lower

than the desired rate. The pressure signal shows an oscillatory modulation

superimposed on a ramp function. The following elastic and strength values

were obtained for this graphite/epoxy layup:
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Strain rate:

Modulus:

Strength:

Ultimate Strain:

= 8s-l

E = 24.6 GPa (3.56 x lO6 psi)

S = 163 MPa (23.6 ksi)

u I0-3=5.4x

The corresponding values obtained under quasi-static loading for the same

material and layup, but different batch, are:

E = 24.0 GPa (3.46 x lO6 psi)

S = 139 MPa (20 ksi)

u 0-3=7.5xi

Additional tests with a hydraulic cylinder were conducted by loading the

piston with a falling weight. A weight of 187N (42 Ib) falling from a height

of 59 cm (22 in.) produced a peak pressure of approximately 48,300 Pa (7,000

psi) in 2 msec. Increasing the height of drop to 122 cm (48 in.) increased the

peak pressure to 67,900 Pa (9,800 psi) in the same length of time (2 msec).

The preliminary conclusion from the falling weight tests was that for some low

strength composite laminates it might be possible to achieve sufficiently high

strain rates.

The loading fixture described before was subsequently modified. The disk

supporting the piston was replaced with another steel disk with a 5.08 cm

(2 in.) diameter threaded hole. A plug containing a detonator was threaded in

this hole with the detonator exposed to the liquid reservoir and the leads

coming out from the other end of the plug. A pressure transducer was mounted

at the bottom disk of the fixture (Figure 3-2). Tests were conducted with

[902/+_45]s graphite/epoxy rings using 50 mg detonators. These detonators pro-

duced sufficient pressure in the liquid to fracture these composite rings in

approximately 12 _s corresponding to a strain rate of over 650 s/sec. A typical

strain record from such a test is shown in Figure 3-3.

A similar test with a similar graphite/epoxy ring was conducted and signals

from four strain gages were recorded with the digital processing oscilloscope.

Strain records from 4 gages around the circumference are shown in Figure 3-4.

The sampling rate was one point per microsecond. The time duration between load

initiation and the first indication of failure was 9 IJS. The measured corres-

ponding strain was 0.0077. All'four strain records show the same average

3-2



strain rate of approximately 850 E/sec. As can be seen in the record of

Figure 3-4 these data are acquired digitally and stored in the system for

further processing. The numerical data appearing in the record are referred

to cursors P and Q on the lower trace. The ordinates are expressed in volts

(or they can be scaled to any other units) and the abscissas are expressed
in microseconds.

A similar test was conducted with an aluminum ring I0 cm (4 in.) in

diameter, 1.57 mm (0.062 in.) thick, and 2.54 cm (I in.) wide. Signals from

two circumferential (hoop) and one axial strain gage and from a hoop conductive

band are shown in Figure 3-5. In the upper figure the cursors are placed on

the trace of the circumferential strain. The ordinate differential is expressed

directly in pe as Q-P=e8=I7,773 pm. The abscissa differential is T=27 Us and

the strain rate is displayed as D:658.28 m/sec. In the lower figure the

cursors are placed on the trace for the axial strain which reaches a value at

failure of approximately c x -6090 pE. The corresponding average Poisson's

ratio is _:0.34. A lower value would result if Poisson's ratio were based on

the initial portion of the axial strain curve. The upper trace appears erratic

either because of some localized yielding or a defective gage. A photograph

of the failed specimen is shown in Figure 3-6. In addition to the cracked

region, regions of localized yielding and reduced thickness appeared all around
the ring.

Although the loading system described before produced sufficiently high

strain rates, the fixture was not considered satisfactory because of the mul-

tiple reflections of the pressure waves in the liquid and the inability to

record the pressure pulse to which the specimen itself is subjected. It was

decided to design a new dynamic loading fixture to provide for a much larger
uid reservoir.

:ix

3.2 QUASI-STATIC TESTING

Quasi-static testing was conducted in a fixture which applies circumferen-

tial tension to the composite ring specimens by means of internal hydraulic
15

pressure. Figure 3-7 is a sketch of the fixture used for quasi-static

loading. It consists of a central steel core containing the fluid passages

and ports. The core is threaded at both ends. They form the seats for the
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two pressure retaining collars. The core has a pair of O-ring grooves where

O-rings seal off the space between the core and the retaining collars. A thin

latex tubular membrane fits tightly over the core between the threaded ends.

The O-rings shown in Figure 3-7 fit over this membrane. Thus, when the re-

taining collars are screwed into place, the latex membrane and O-rings provide

a leak proof barrier for the specimen pressurization fluid.

The test section contains a thick wall rubber tube, somewhat longer than

the width of the ring specimen as shown in Figure 3-7. The tube fits over the

rubber membrane and has an outer diameter somewhat smaller than the inner

diameter of the ring specimen. The ends of the rubber tube fit into recesses

provided for it in the retaining collars. Since the rubber is soft and com-

pliant the hydraulic pressure is transmitted uniformly, and for all practical

purposes, undiminished to the inside surface of the specimen. The rubber tube

acts not only as the pressure transmission medium, but also as an extrusion

barrier for the latex membrane. As with any hydraulic seal system, if the

pressure is sufficiently high, the rubber tube can be extruded between the

specimen ends and the retaining collars. To guard against this, the ends of

the ring specimen should be parallel and flat.

To perform a test, the upper retaining collar is removed and the ring

specimen is slipped over the rubber tube. The upper retaining collar is next

screwed back into place and tightened up until the ring specimen is in contact

with the end surfaces of both retaining collars. The hydraulic lines, a pressure

gage, and a hydraulic hand pump are next connected to the test fixture as shown

in Figure 3-8. The pressure is applied in steps until the ring fails. Strain

gage readings are recorded at every step. Typical ring specimens instrumented

with strain gages and after failure are shown in Figure 3-9.

3.3 DYNAMIC TESTING

3.3.1 Experimental Procedures

Ring specimens were loaded by an internal pressure pulse applied

explosively through a liquid in a specially designed fixture. This fixture

consists of two thick cylinders and two disks assembled together with the ring

specimen between them (Figures 3-I0 to 3-12). The reservoir was filled with a
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mixture of water and water-soluble oil. The pressure pulse in the chamber was

produced by detonating an explosive charge in the liquid reservoir. The explo-

sive charges varied according to the laminate layup of the test specimen (or

expected failure pressure) and the desired strain rate. Two types of explosive

charges were used: pistol powder in quantities ranging between 260 mg and

1,560 mg, and PETN detonators (50 mg, I00 mg, and 330 mg). The explosive

amounts were varied with the various specimens to obtain strain rates in the

same range.

The dynamic internal pressure originally was measured with a piezoelectric

transducer mounted on the side of the cylinder. This transducer had a resonant

frequency higher than 500 kHz. Tests were conducted with unidirectional and

angle-ply graphite/epoxy, steel, and aluminum rings instrumented with strain

gages to check out the system. Strain gage signals from the composite and

metallic rings and signals from the piezoelectric pressure transducer were
recorded.

Figure 3-13 shows strain and pressure signals obtained from a [08]

graphite/epoxy (SP288/T300) specimen, and a 1.27 cm (0.50 in.) wide, and 0.56 cm

(0.219 in.) thick steel ring. The upper trace represents the circumferential

strain in the graphite/epoxy ring and reaches a peak of 4670 _, due to pre-

mature failure around a known defect. The second and third traces represent

circumferential strain measurements at two locations on the steel ring. The

average peak strain was 965 _. This peak occurs beyond the point of fracture

of the graphite/epoxy ring. The bottom trace represents the pressure measured

by the piezoelectric transducer. It shows a small initial peak followed by a

much longer peak of 29,640 kPa (4300 psi), which occurs near the point of

maximum rate change in the composite ring strain. An X-Y plot of the above

data is shown in Figure 3-14. Failure occurred in approximately 28 _s.

Figure 3-15 shows circumferential strain and pressure records for a [908]

graphite/epoxy ring loaded in the fixture with a 50 mg detonator. The peak

strain recorded in the upper trace is 4,880 _E. The pressure pulse shows two

peaks with the larger exceeding 26,400 kPa (4400 psi). Recorded time to

failure was 17 _s, corresponding to an average strain rate of 290 s-I.
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Figure 3-16 shows two sets of records for a [±4512s graphite/epoxy ring

loaded dynamically with a 50 mg charge. The upper two traces in each photo-

graph represent strain readings with average peaks of 9300 WE and ll,170 _.

The lower trace represents the pressure pulse which appears different in the

two tests. Peak pressures of 37,880 kPa (5490 psi) and 29,390 kPa (4260 psi)

were recorded. The corresponding times to failure were 30 _s and 36 Us, cor-

responding to average strain rates of 310 s"l in both cases.

Because of the large noise of the signals obtained with the pressure trans-

ducer, it was decided to replace it with an instrumented calibration ring placed

next to the composite ring specimen. Several tests were conducted with steel

rings of two thicknesses, 2.77 mm (0.I09 in.) and 1.24 mm (0.049 in.). For the

low pressures necessary to fracture 90-deg composite rings, the strains in the

steel rings were approximately inversely proportional to their thickness and

there was correlation between the effective pressure computed from the steel

ring strains and the pressure measured with the piezoelectric transducer.

However, at the higher pressures necessary to fracture O-deg composite rings,

the steel rings above deform into the plastic range (Figure 3-17). A new set of

rings made of Vascomax steel was fabricated. The material is an 18% Nickel

maraging steel with a 2415 MPa (350 ksi) yield point and a 193 GPa (28 x lO6 psi)

modulus. It is heat treated at 810°K (lO00°F) for 3 hours. These pressure-

cell rings have an internal diameter of 9.957 cm (3.920 ino), a width of 1.27 cm

(0.5 in.), and thicknesses of 0.64 mm (0.025 in.) and 1.42 mm (0.056 in.). These

rings were instrumented with foil and semiconductor strain gages. The latter

were Kulite Semiconductor strain gages with a resistance •of 119 ± 2 ohms and a

gage factor of llO (Type DCP-120-500). The instrumented rings were mounted

and calibrated in the static ring testing fixture discussed before. Calibration

results are shown in Figure 3-18. The static modulus determined from these

calibration tests was computed as E = 193 GPa (28.0 x lO6 psi).

To answer the question of any possible strain rate dependence of the Vasomax

steel modulus, a bar of this material 0.620 cm (0.244 in.) x 0.617 cm (0.243 in.)

x 9.406 cm (3.703 in.) instrumented with strain gages was tested dynamically.

It was loaded with a 50 mg detonator at one end and the strain history at the

gage location was recorded. The resulting strain rate, the measured wave propa-

gation velocity, and the computed modulus were:
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-I= 1151s

c o = 4852 ms-I (191,020 in./sec)

E : 190.5 GPa (27.6 x 106 psi)

The result above indicates that there is no strain rate effect on the modulus

of Vascomax steel for the range of interest.

3.3.2 Data Processing

Data analysis and interpretation are based on the mechanics of a

dynamically pressurized elastic ring. The equation of motion for axisymmetric

loading is:

@_r °r " _e
B_ + - PU (3-I)r

where Or, ae the radial and circumferential stresses, r the radial distance,

p the material mass density, and u the radial displacement. Using the Lam_

equations for an internally pressurized cylinder:

ade b2 -2 +- a

the equation of motion at r = b is written as:

(3-2)

Ib 2a221 b2
P 2 ] : oe + pbU : _e + p _8

where a and b are the inner and outer radii of the ring.

The primary data recorded in the dynamic ring tests are:

(3-3)
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S

_0 " circumferential strain in steel ring
(pressure cell) at the outer radius, b.

C

_B - circumferential strain in composite ring
at the outer radius, b.

C
- axial strain in composite ring at the

x outer radius, b.

Assuming a uniaxial state of Stress in the circumferential direction, the

stress in the elastic ring is computed as

:iil

s = Es s (3-4)
°8 _e

and then, the dynamic pressure is obtained in terms of this stress and the second

derivative of ¢_

/

S+ps _ 2
P = 0 s \ 2as

(3-5)

where Es and Ps are the modulus and density of steel.

The circumferential stress in the composite ring is obtained in terms of
c

the pressure above and the second derivative of _8

_) = P_b 2 _ a2 _ Pcbc ..c

\c- c

(3-6)

The dynamic stress strain curve for the composite material is obtained by

plotting _ versus E_. Moduli, Poisson's ratios, strength, and ultimate strain

forthe composite material are thus obtained from the recorded and computed data.

In the case of the 10-deg off-axis rings used for determination of in-plane

shear properties 3-gage rosettes were mounted on the outer surface of the

composite rings. The measurements made were:
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s
me - circumferential strain in steel ring

c
c8 - circumferential strain in composite ring

c
_x " axial strain in composite ring

c
_45 - 45-deg strain in composite ring.

The circumferential stress in the composite ring was obtained from

Equation 3-6 as before. The in-plane shear stress, referred to the fiber

direction, is given by

c c
o12 = o0 sin@cosqb (3-7)

where @ : lO-deg, the fiber orientation with respect to the circumferential

direction. The in-plane shear strain is obtained from the three strain components
as follows:

[ c]c c c +E @C eo - Ex c Ex
El2 - 2 sin2#p + E45 2 cos2qb (3-8)

c
A dynamic shear stress versus shear strain curve is obtained by plotting o12c
versus el2" The shear modulus is given by

Gl2
2E12 (3-9)

which can be taken from the initial slope or the secant of the curve.

In the computation above, it is necessary to obtain second derivatives of

experimental data, a task which is very difficult to do with precision. The

procedure adopted here involves smoothing operations and approximations. The

original strain data are smoothed by a three-point averaging technique. Each

point on the record, except the first and last ones, is replaced by the average

of its two neighboring points. Subsequently, the smoothed curve is differen-

tiated directly on the processing oscilloscope and the derivative curve (strain

rate) is smoothed. The smoothed strain rate curve is then divided into four

3-9



equal segmentsand a straight line is fitted in each segmentby the least
squares method. Thus, a four-step approximation is obtained of the second
derivative (strain acceleration). This four-segment approximation procedure

was chosen as it gave results in agreementwith those obtained by graphical

(manual) smoothing and differentiation based on experienced judgment and dis-
crection. The discontinuous stepwise curve for the strain acceleration is

smoothedby applying the three-point averaging technique seven consecutive
times. In this case, an initial point fixed at zero wasadded to insure that
the acceleration correction on the pressure and stress is zero at zero time

and strain. The sequenceof all these operations is illustrated in Figure 3-19
for the circumferential strain in the steel ring, from the as-recorded strain

to the smoothedsecond derivative.

The circumferential strain in the composite ring is treated in an identical

manner to arrive at the first and second derivatives.

All smoothing and computational operations were programmedand done auto-
matically in every case. The computer programwas stored in the floppy disk

memoryof the processing oscilloscope.
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Figure 3-I. Pressure and strain signals for [902/±45]s
graphite/epoxy ring loaded by hammer impact on piston

of pressure vessel.
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Detonator Plug

Specimen

Pressure Transducer

Figure 3-2. Fixture for dynamic loading of
composite ring specimens.
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Specimen Fracture
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I0 _sec/div

Figure 3-3. Circumferential strain record in dynamically
loaded [902/±45]s graphite/epoxy ring specimen.
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Figure 3-4. Circumferential strain records in

dynamically loaded [902/±45!s graphite/epoxy
rlng speclmen.
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Figure 3-5. Strain records in dynamically loaded
aluminumring (second trace from top is circumferential

strain, third trace is axial strain).

3-15



• i_ _,

i ¸ :'

i

i,

Figure 3-6. Failure of dynamically loaded aluminum ring.
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Figure 3-7. Fixture for quasi-static loading of composite ring specimens.
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Figure 3-8. Photograph of assembled fixture for quasi-static loading of
composite ring specimens.

ORIGINAL PAGE IS

3-18 OF POOR QU#,,LiTY



"aanL.Le_ aa_._e pue sa6e6 U.LEJ_S q_.LM suamL3ads 6U.l.a _xodala_.Lqdea9 "6-E aan6.L-I

o
_T

, . L_

¢_

0©



iiii

\\

Figure 3-10. Fixture for dynamic loading of

DETONATOR
i i

COMPOS ITE RING

STEEL RING

PRESSURE
TRANSDUCER

composite ring specimens.
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Figure 3-11. Photograph of components of fixture for
dynamic loading of composite ring specimens.
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Figure 3-12. Photograph of assembled fixture for dynamic loading of
composite ring specimen.
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Figure 3-13. Circumferential strain and pressure
records (top trace: strain in [08] graphite/epoxy
ring; second and third traces: strains in steel
ring; bottom trace: pressure transducer).
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Strain and pressure signals for dynamic loading of steel and [08 ]
graphite/epoxy ring specimens.
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Figure 3-15. Circumferential strain and pressure

records for dynamically loaded [908] graphite/epoxy
ring.
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Figure 3-16. Circumferential strain and pressure
records for dynamically loaded [-+4512s graphite/epoxy

ring.
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Figure 3-17. Circumferential strain and pressure

records for dynamically loaded 0.277 cm (0.109 in.)
and 0.124 cm (0.049 in.) thick steel rings.
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Figure 3-18. Pressure-strain calibration of Vascomax steel rings used as pressure cells.



!

E
qp

eqllG 4q11°4

e

41DO g*

44 g6

4

dtl •

If4 g

04 g4_

4 g

_I4G_GIQ4

qlq4444404144

_OQG4,0414,414;

OO

E

_41e40444Q_O

4404qJqqL

el_Og41_l_t4Q44_gt 444 I_

• 4

• OO

• E

4Qq_4O_

(0) TIME_ (b) TIME_ (C) TIME

Figure 3-19. Illustration of smoothing and approximation operations• a) As recorded and smoothed

strains, b) strain rate, smoothed strain rate and piecewise linear approximation, and c) stepwise

and smoothed strain acceleration•



_i _ . "_ • . _



4. STRAIN RATE CHARACTERIZATION OF UNIDIRECTIONAL COMPOSITES

>_

4.1 INTRODUCTION

The objective of this task is to determine the longitudinal, transverse,

and in-plane shear unidirectional properties of the three materials, discussed

previously in Section 2, at three strain rates. The materials characterized

are SP288/T300 graphite/epoxy, SP288/AS graphite/epoxy, and 80AS/20S/PR288

graphite/S-Glass/epoxy. The three strain rates selected are quasi-static,

intermediate, and high rates ranging from 10 -4 s "I to over 500 s "I. All

characterization tests were conducted with the same type of thin ring specimen

under internal pressure. This was the case for the quasi-static rate as well

for consistency, although quasi-static properties were obtained from flat

coupon specimens (see Section 2). In all cases, with few exceptions, three

replications per test were used. In all cases results were presented in the

form of stress-strain curves to failure and properties determined included

initial, secant, and terminal strain rate; initial, secant, and terminal

modulus and Poisson's ratio; and strength and ultimate strain. The effects of

strain rate on the various properties are discussed below.

4.2 LONGITUDINAL TENSILE PROPERTIES

4.2.1 Graphite/Epoxy (SP288/T300)

Quasi-static longitudinal properties were obtained by testing three

[06] rings instrumented with strain gages. The fiber orientation of these

specimens was in the circumferential direction. The specimens were tested

according to the procedure described in Section 3.2. Stress-strain curves to

failure, as well as modulus, Poisson's ratio, strength, and ultimate strain,

for the three specimens tested are shown in Figures 4-I, 4-2, and 4-3. Results

for the three specimens tested are tabulated in Table 4-I.

The O-deg rings above tend to close in a little after failure indicating

the presence of residual stresses. It is assumed that the self-equilibrated

state of residual stress is equivalent to a bending moment M in the circumferential
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TABLE4-I. QUASI-STATICTENSILEPROPERTIESOF[06]
SP288/T300GRAPHITE/EPOXY

Specimen Strain Rate Modulus-(E_1), Poisson's
Number (Eli), s-I GPa (I06 psi) Ratio (vi_)

19-2

19-3

19-10

19-2

19-3

19-10

Initial Properties

l X 10-4 141 (20.4)

l X lO"4 136 (19.7)

1 X 10.4 137 (19.8)

Secant Properties

l X 10-4 141 (20.4)

l X lO-4 136 (19.7)

1 X 10-4 137 (19.8)

Terminal Properties

19-2 1 X 10-4 141 (20.4)

19-3 1 X lO-4 136 (19.7)

19-10 l X lO"4 137 (19.8)

19-2

19-3

19-10

Ultimate Properties

Time to Strength

Failure (SLIT),

(tf), __.____ss MPa (ksi)

1 X 108 1528 (221)

1 X I08 1445 (209)

1 X 108 1340 (194)

0.30

0.25

0.26

0.30

0.25

0.26

0.30

0.25

0.26

Strain

(e_lT)

O.OllO

0.0106

0.0099

!
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direction. If the broken ends of the ring specimen move past each other a

distance 2_, the residual bending moment is computed from the relation

M

Ellla
2

iTa
(4-I)

where I = moment of inertia of ring cross section

a = ring radius.

The outer fiber residual stress is then

EllSt
allR - 2 (4-2)

2_a

where t is the specimen thickness. In the case of the rings above a maximum

residual stress of all R : 90 MPa (13 ksi) was calculated. This is the amount

by which the measured strength values must be increased to obtain more realistic

values.

Intermediate rate longitudinal properties were obtained by testing three

[06 ] rings in the fixture described in Section 3.3.1. To achieve strain rates

in the desired range 650 mg of slow-burning pistol powder (red dot) was used

in the pressure chamber of the fixture. The circumferential and axial strains

in the composite ring and the circumferential strain in the steel calibration

ring were recorded in every case. Strain records for the three rings tested

(Specimens 40-3, 40-4, and 40-5) are shown in Figures 4-4, 4-5, and 4-6. These

data were analyzed following the procedures described in Section 3.3.2. Results

in the form of dynamic stress-strain curves are shown in Figures 4-7, 4-8, and

4-9. Results for the three rings tested are tabulated in Table 4-2. The

initial strain rates range between lOs -I and 24s "I and the average (secant)

strain rates between 40s "I and 58s -I. The times to failure range between

188 _s and 250 _s.

High strain rate properties were obtained by testing three [06] rings

under dynamic internal pressure produced by two I00 mg PETN detonators in the

pressure chamber. The circumferential and axial strains in the composite

4-3



TABLE4-2. INTERMEDIATESTRAINRATETENSILEPROPERTIES
OF [06] SP288/T300GRAPHITE/EPOXY

Specimen Strain Rate Modulus (E11), Poisson's
Number (_11), s-I GPa (106 psi) Ratio (_12)

Initial Properties

40-3 I0 151.1 (2i.9) 0.35

40-4 II 148.4 (21.5) 0.25

40-5 24 132.5 (19.2) 0.41

Secant Properties

40-3 40 146.3 (21.2)

40-4 46 144.9 (21.0)

40-5 58 122.8 (17.8)

Terminal Properties

40-3 103 165.6 (24.0)

40-4 175 167.7 (24.3)

40-5 230 107.6 (15.6)

Ultimate Properties

Time to Strength
Failure (SLIT),

(tf), lJs MPa (ksi)

40-3 222 1242 (180)

40-4 250 1711 (248)

40-5 188 1325 (192)

0.33

0°23

0.40

0.35

0.24

0.26

Stra i n
U

( 11T)

0.0085

0.0115

0.0111

4-4
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ring and the circumferential strain in the steel calibration ring were recorded

in every case. Strain, strain rate, and strain acceleration records for the

three rings tested (Specimens 19-4, 19-5, and 19-6) are shown in Figures 4-10

to 4-18. The corresponding dynamic stress-strain curves are shown in Figures

4-19, 4-20, and 4-21. Results are tabulated in Table 4-3. The initial strain

rates range between 150s "I and 200s -I and the secant strain rates between

180s-I and 265s"I The times to failure range between 34 _s and 51 _s
o •

Average results for the three ranges of strain rate investigated are

tabulated in Table 4-4. The initial and secant moduli increase with strain

rate, up to 12% in the case of the secant modulus• No significant trend is

evident in Poisson's ratio. Dynamic strength values showed considerable

scatter, but on the average, the strength does not vary with strain rate. The

same is true for the ultimate tensile strain, although the value at the highest

strain rate is the lowest.

4.2.2 G_aphite/Epoxy (SP288/AS)

Quasi-static longitudinal properties were obtained by testing

three [06] rings instrumented with strain gages according to the procedures

described earlier in Section 3.2. Stress-strain curves to failure, as well as

modulus, Poisson's ratio, strength, and ultimate strain for the three specimens

tested are shown in Figures 4-22, 4-23, and 4-24. In two of the three cases

the circumferential (longitudinal) strain shows some apparent stiffening and

the axial (transverse to the fibers) strain shows nonlinear response at stress

levels of I035 MPa to ll70 MPa (150 ksi to 170 ksi). Results for the three

specimens tested are tabulated in Table 4-5. As in the case of SP288/T300, the

rings tested tended to close in after failure because of residual stresses.

In this case a maximum residual stress on the outer fibers of _lIR = 76 MPa

(ll ksi) was calculated from the measured overlap of the broken ends after

failure.

Intermediate rate longitudinal properties were obtained by testing three

[06] rings as described before in Section 3•3.1. A charge of 650 mg of pistol

powder was used in the pressure chamber of the fixture. The circumferential

and axial strains in the composite ring and the circumferential strain in the

steel calibration ring were recorded• Strain records for the three rings tested

4-5



TABLE 4-3.

Specimen
Number

19-4

19-5

19-6

19-4

19-5

19-6

19-4

19-5

19-6

19-4

19-5

19-6

HIGH STRAIN RATE TENSILE PROPERTIES OF [06 ]
SP288/T300 GRAPHITE/EPOXY

Strain Rate

(_11), s-I

Modulus (E11),
GPa (106 psi)

Initial Properties

Poisson's
Ratio (v12)

200 152.8 (22.15) --

160 214.6 (31 .I0) --

150 201.5 (29.20) 0.30

Secant Properties

265 125.0 (18.12) 0.18

241 194.9 (28.24) 0.17

180 143.6 (20.81) 0.30

Terminal Properties

480 98.7 (14.30) --

270 187.7 (27.20) --

210 73.1 (I0.60) 0.29

Ultimate Properties

Time to Strength Strain

Failure (SliT), u

(tf), IJS MPa (ksi) (mlIT)

34 II13 (161) 0.0090

40 1880 (272) 0.0096

51 1325 (192) 0.0092
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TABLE 4-4.
SP288

Specimen
Numbers

19-2,3,10

40-3,4,5

19-4,5,6

19-2,3,10

40-3,4,5

19-4,5,6

LONGITUDINAL TENSILE PROPERTIES OF UNIDIRECTIONAL
'T300 GRAPHITE/EPOXY AT VARIOUS STRAIN RATES

Strain Rate Modulus (E11), Poisson's
(_11), s-I GPa (IO s psi) Ratio (_12)

Initial Properties

1 X 10 -4 138 (20.0) 0.27

15 144 (20.9) 0.34

170 190 (27.5) 0.30

Secant Properties

1 X 10 -4 138 (20.0) 0.27

48 138 (20.0) 0.32

229 154 (22.4) 0.22

Terminal Properties

19-2,3,10 1 X 10-4 138 (20.0) 0.27

40-3,4,5 169 147 (21.3) 0.28

19-4,5,6 320 120 (17.4) 0.29

19-2,3,10

40-3,4,5

19-4,5,6

Ultimate Properties

Time to Strength Strain

Failure (Sll T ), u )
(tf), _s MPa (ksi) (_IIT

1 X 108 1435 (208) 0.0105

220 1426 (207) 0.0104

42 1438 (208) 0.0093

4-7
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TABLE 4-5. QUASI-STATIC TENSILE PROPERTIES OF [06 ]
SP288/AS GRAPHITE/EPOXY

Specimen
Number

7-I

7-5

7-I0

7-I

7-5

7-10

7-I

7-5

7-10

7-I

7-5

7-10

Strain Rate
(_11), S-I

Modulus (E11),
GPa (IO s psi)

Initial Properties

1 X lO-4 138 (20.0)

1 X I0 -4 140 (20.3)

1 X 10 -4 129 (18.8)

Secant Properties

1 X 10-4 142 (20.5)

1 X 10-4 140 (20.3)

1 X 10 -4 132 (19.1)

Terminal Properties

1 X 10-4 147 (21.2)

1 X 10-4 140 (20.0)

l X lO"4 137 (19.8)

Ultimate Properties

Time to
Fai Iure

1 XIO 8

1 XIO 8

1 XIO 8

Strength
(SLIT),

MPa ( ks i )

1368 (198)

1547 (224)

1460 (212)

Poi sson' s
Ratio (_12)

0.39

0.32

0.37

0.40

0.55

0.43

0.41

0.53

Strain
U

(_]IT)

0.0097

0.0110

0.0111
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(Specimens45-9, 45-10, and 45-11) are shownin Figures 4-25, 4-26, and 4-27.

The corresponding dynamic stress-strain curves are shownin Figures 4-28, 4-29,

and 4-30. Results are tabulated in Table 4-6. The initial strain rates range
between8s"I and 24s-I and the average (secant) strain rate between36s-I and

56s-I. The times to failure range between185 _s and 225 _s.

High strain rate properties were obtained by testing four [06] rings.
Specimens7-7 and 7-8 were loaded with a 330 mgPETNdetonator; Specimen7-6
was loaded with two I00 mgdetonators; and Specimen7-g was loaded with a

I00 mgdetonator in the pressure chamber. The circumferential and axial
strains in the composite ring and the circumferential strain in the steel

calibration ring were recorded. Strain, strain rate, and strain acceleration

records for the four rings tested are shownin Figures 4-31 to 4-42. The cor-
responding dynamic stress-strain curves are shownin Figures 4-43 to 4-46.

Results are tabulated in Table 4-7. The initial strain rates range between
170s"I and 450s-I and the secant strain rates between240s-I and 328s"I. The

times to failure range between31 _s and 37 _s.

Average results for the three ranges of strain rate investigated are
tabulated in Table 4-8. The moduli (initial, secant, and terminal) all increase
with strain rate by up to 20%at the high rate. No significant trend is evi-

dent in Poisson's ratio. Dynamicstrength values showedconsiderable scatter,

but on the average, the strength does not vary significantly with strain rate.
The sameis true for the ultimate tensile strain.

4.2.3 Graphite/S-Glass/Epoxy (80AS/20S/PR288)

Quasi-static longitudinal properties were obtained by testing [06]

rings instrumented with strain gages. Stress-strain curves to failure, as well

as modulus, Poisson's ratio, strength, and ultimate strain are shown in

Figures 4-47 and 4-48. Three additional tests were conducted, but they gave

low strength values because of asymmetrical distribution of the glass strips in

the ring specimens. Strains are linear up to approximately 830 MPa (120 ksi);

thereafter, an apparent stiffening of the specimen occurs. Results for the

two specimens of Figures 4-47 and 4-48 are tabulated in Table 4-9. As in the

case of the graphite/epoxy rings before, the hybrid rings tended to close in

4-9
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TABLE 4-6. INTERMEDIATE STRAIN RATE TENSILE PROPERTIES

OF [06 ] SP288/AS GRAPHITE/EPOXY

Specimen Strain Rate Modulus (E11), Poisson's
Number (_11)' s-I GPa (106 psi) Ratio (_12)

Initial Properties

45-9 8 155.9 (22.6) 0.31

45-10 24 148.4 (21.5) --

45-11 15 128.3 (18.6) 0.40

Secant Properties

45-9 36 161.5 (23.4) 0.44

45-10 45 158.7 (23.0) 0.35

45-11 56 120.8 (17.5) 0.34

Terminal Properties

45-9 II0 160.8 (23.3) 0.37

45-10 113 203.6 (29.5) 0.42

45-II 225 106.3 (15.4) 0.40

Ultimate Properties

45-9

45-10

45-11

Time to Strength Strain

Failure (SLIT) ( u
(tf), l_s MPa (ksi) CllT)

225 1325 (192) 0.0082

185 1318 (191) 0.0083

198 1325 (192) O.QIIO
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TABLE4-7. HIGHSTRAINRATETENSILEPROPERTIESOF
[06 ] SP288/AS GRAPHITE/EPOXY

Specimen
Number

Strain Rate Modulus (E11), Poisson's
(_11), s -I GPa (106 psi) Ratio (_12)

Initial Properties

7-6 170 155.9 (22.60) 0.25

7-7 250 176.6 (25.60) 0.55

7-8 260 163.7 (23.72) 0.41

7-9 450 151.8 (22.00) 0.40

Secant Properties

7-6 240 134.9 (19,56) 0.22

7-7 328 203.5 (29.49) 0.32

7-8 316 163.3 (23.67) 0.54

7-9 314 165.6 (24.00) 0.55

7-6

7-7

7-8

7-9

Terminal Properties

370 110.4 (I 6.00)

410 248.4 (36.00)

390 180.8 (26.20)

210 96.6 (I 4.00)

Ultimate Properties

7-6

7-7

7-8

7-9

Time to Strength
Failure (SLIT)

(tf), IJs MPa (ksi)

37 1214 (176)

32 2136 (310)

31 1601 (232)

35 I090 (158)

0.32

0.31

0.44

Stra i n
• u
(_IIT)

0.0090

0.01 05

0.0098

0.0110

J
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TABLE 4-8. LONGITUDINAL TENSILE PROPERTIES OF UNIDIRECTIONAL
SP288/AS GRAPHITE/EPOXY AT VARIOUS STRAIN RATES

Specimen Strain Rate Modulus (E11), Poisson's
Number (_11), s-I GPa (106 psi) Ratio (_12)

Initial Properties

7-I ,5,10 1 X 10-4 136 (19..7) 0.36

45-9,10,11 16 144 (20.9) 0.36

7-6,7,8,9 280 162 (23.5) 0.40

Secant Properties

7-I ,5,10 1 X 10-4 138 (20.0) 0.46

45-9,10,11 46 147 (21.3) 0.38

7-6,7,8,9 300 167 (24.2) 0.41

Terminal Properties

7-I ,5,10 1 X 10-4 140 (20.3) 0.47

45-9,10,11 150 157 (22.7) 0.40

7-6,7,8,9 345 159 (23.1) 0.36

Ultimate Properties

Time to Strength Strain
Failure (SLIT) u

(mllT)
(tf), ______s MPa (ksi)

7-1,5,10 1 X 108 1458 (211) 0.0106

45-9,10,11 203 1322 (192) 0.0092

7-6,7,8,9 34 1511 (219) 0.0101
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TABLE 4-9. QUASI-STATIC TENSILE PROPERTIES OF [06]
80AS/20S/PR288 GRAPHITE/S-GLASS_EPOXY

Specimen
Number

I0-I

I0-5

I0-I

I0-5

I0-I

10-5

I0-I

I0-5

Strain Rate

s-I
Modulus (E I ),
GPa (106 ps))

Initial Properties

1 X 10 -4 113 (16.4)

1 X 10-4 I01 (14.7)

Secant Properties

1 X 10-4 116 (16.9)

1 X 10-4 I01 (14.7)

Terminal Properties

1 XIO -4

1 XIO "4

121 (17.5)

I01 (14.7)

Ultimate Properties

Time to
Fai Iure

(tf), IJs

1 XIO 8

1 XIO 8

Strength
(SLIT)

MPa (ks i )

1237 (179)

1242 (180)

Poisson's

Ratio (_12)

0.18

0,20

0.30

Strain

(_IT)

0.0107

0.0122

4-13



i_ _

i i_

ill

after failure because of residual stresses. The maximum tensile residual

stress for the hybrid rings computed as before is OlIR = 75 MPa (II ksi).

Intermediate rate longitudinal properties were obtained by testing three

[06] rings as described before. A charge of 650 mg of pistol powder was used

in the pressure chamber of the fixture_ Strain records for the three hybrid

rings tested and the steel calibration ring are shown in Figures 4-49, 4-50,

and 4-51. The corresponding dynamic stress-strain curves are shown in Figures

4-52, 4-53, and 4-54. Results are tabulated in Table 4-10. The initial strain

rates range between 9s "I and 18s "I and the average (secant) strain rates

between 45s -I and 52s -I. The times to failure range between 186 _s and 218 _s.

Considerable scatter exists in the values of both moduli and strength.

High strain rate properties were obtained by testing three [06 ] rings. A

I00 mg PETN detonator, two I00 mg PETN detonators, and a 330 mg PETN detonator

were used in the pressure chamber for Specimens I0-8, 10-9, and I0®I0, res-

pectively. Strain and strain derivative records for the three hybrid rings

tested and the steel calibration ring are shown in Figures 4-55 to 4-63. The

corresponding dynamic stress-strain curves are shown in Figures 4-64, 4-65,

and 4-66. Results are tabulated in Table 4-11. The initial strain rates range

between 70s -I and 200s "I and the average (secant) strain rates between 186s "I

and 370s "I. The times to failure range between 34 _s and 51 _s. Considerable

scatter exists in the values of moduli and strength.

Average results for the three ranges of strain rate investigated are

tabulated in Table 4-12. Because of the scatter and the small number of

specimens involved, the average values shown can only be viewed as general

indicators of trends. There is an appreciable increase in initial modulus

with strain rate, however, the secant modulus shows only a slight increase.

The strength appears to be decreasing with strain rate; however, the trend

would appear differently if the lowest values for the intermediate and high

strain rates were dropped. No significant variations with strain rate can be

detected in the ultimate strain values.
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TABLE 4-I0.

Specimen
Number

43-2

43-3

43-4

43-2

43-3

43-4

43-2

43-3

43-4

43-2

43-3

43-4

INTERMEDIATE STRAIN RATE TENSILE PROPERTIES OF

[06] 80AS/20S/PR288 GRAPHITE/S-GLASS/EPOXY

Strain Ra_e
s--

Modulus (E I ),
GPa (106 psi)

Initial Properties

9 143 (20.7)

16 87 (12.6)

18 121 (17.5)

Secant Properties

139 (20.1)

84 (I 2.2)

52 131 (I 9.0)

Terminal Properties

136 (19.7)

75 (10.9)

166 (24.0)

Ultimate Properties

45

5O

235

140

120

Poisson's

Ratio (_12)

0°56

m_

0.35

0.72

O.39

0.68

0.79

Time to Strength Strain
Failure (S1
(tf) lJS MPa 1(T), ksi) (_IIT)u

218 1366 (198)

204 861 (125)

186 1256 (182)

0.0098

0.0103

0.0096
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TABLE 4-11.

Specimen
Number

10-8

10-9

I0-I0

10-8

10-9

I0-I0

10-8

I0_9

I0-I0

10-8

10-9

I0-I0

HIGH STRAIN RATE TENSILE PROPERTIES OF [06 ]
80AS/20S/PR288 GRAPHITE/S-GLASS/EPOXY

Strain Rate
(_11), s-l

Modulus (E11),
GPa (106 psi)

Initial Properties

Poisson's

Ratio (_12)

70 161 (23.3.) --

180 166 (24.1) 0.20

200 184 (26.6) 0.40

Secant Properties

186 102 (14.7)

249 136 (19.7)

370 99 (14.3)

Terminal Properties

260 33 (4.8)

380 104 (I 5.0)

600 84 (12.1)

U1timate Properties

0.16

0.40

0.40

_m

B_

_w

Time to Strength Strain

Failure (SIIT_i _IIT )__f) ,__ MPa ) ( u

51 966 (140) 0.0095

35 1180 (171) 0.0087

34 1242 (180) 0.0126
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TABLE4-12. LONGITUDINALTENSILEPROPERTIESOFUNIDIRECTIONAL
80AS/20S/PR288GRAPHITE/S-GLASS/EPOXYAT VARIOUSSTRAINRATES

Specimen Strain Rate Modulus (El;), Poisson's
Numbers (_11), s'l GPa (106 psl) Ratio (_2)

Initial Properties

10-1,2 1 X 10 -4 107 (15.6.) 0.18

43-2,3,4 14 117 (16.9) 0.45

10-8,9,10 150 170 (24.7) 0.30

Secant Properties

I0-1,2 1 X 10-4 109 (15.8) 0.20

43-2,3,4 49 118 (17.1) 0.55

10-8,9,10 268 112 (16.2) 0.32

Terminal Properties

I0-1,2 l x I0 -4 Ill (16.1) 0.30

43-2,3,4 165 126 (18.2) 0.73

10-8,9,10 413 73 (10.6) --

Ultimate Properties

Time to Strength Strain

Failure (SII_ u(tf), IJs MPa i ) ( _I 1T)

10-1,2 1 X 108 1240 (180) 0.0115

43-2,3,4 203 1162 (168) 0.0099

10-8,9,10 40 1129 (164) 0.0103

i:i
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4.3 TRANSVERSE TENSILE PROPERTIES

4.3.1 Graphite/Epoxy (SP288/T300)

Quasi-static transverse properties were obtained by testing four

[908] rings instrumented with strain gages. The fiber orientation of these

specimens was in the axial direction. The specimens were tested according to

the procedure described in Section 3.2. Stress-strain curves to failure, as

well as modulus, Poisson's ratio, strength, and ultimate strain, are shown in

Figures 4-67 through 4-70. Strains are linear up to stress levels between

28 MPa and 35 MPa (4 and 5 ksi) corresponding to strains between 0.003 and

0.004. The moduli and strengths are somewhat lower than those obtained pre-

viously using flat coupon specimens (see Section 2.2). Results for the three

specimens tested are tabulated in Table 4-13.

Intermediate rate transverse properties were obtained by testing three

[908] rings using 650 mg of pistol powder in the pressure chamber. The cir-
cumferential and axial strains in the composite rings and the circumferential

strain in the steel calibration ring were recorded as shown in Figures 4-71,

4-72, and 4-73. The corresponding dynamic stress-strain curves are shown in

Figures 4-74, 4-75, and 4-76. Results are tabulated in Table 4-14. The axial

strain records appeared erratic and as a result no Poisson's ratios were com-

puted. The initial strain rates vary between 18s -I and 20s -I and the average

(secant) rates between 50s "I and 58s "I. The times to failure range between

III _s and 120 _s.

High strain rate properties were obtained by testing three [908 ] rings.

Specimen No. 3-I was loaded with 260 mg fast-burning pistol powder and Specimen

Nos. 3-2 and 3-5 with 50 mg PETN detonators in the pressure chamber. Strain and

strain derivative records for the three graphite/epoxy rings and the steel

calibration ring are shown in Figures 4-77 through 4-85. The corresponding

dynamic stress-strain curves are shown in Figures 4-86, 4-87, and 4-88. Results

are tabulated in Table 4-15. The strain rates achieved for Specimen No. 3-I are

relatively low, with values of 15s -I and 89s -I for the initial and secant rates,

respectively° Initial and secant rates for the other two specimens vary between

lOOs -I and 140s -I, and 197s "I and 202s -I, respectively. Times to failure range

between 35 _s and 89 _s.
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TABLE4-13. QUASI-STATICTENSILEPROPERTIESOF[908]
SP288/T300GRAPHITE/EPOXY

Specimen Strain Rate Modulus_(E22), Poisson's
Numbers (_22), s -z GPa (106 psi) Ratio (_2z)

Initial Properties

3-3 ] X 10-4 9.6 (1.39) 0.01

3-4 1 X 10-4 9.4 (1.36) 0.02

3-7 1 X 10-4 9.4 (1.37) 0.02

3-11 1 X 10-4 9.1 (1.32) 0.02

Secant Properties

3-3 1 X I0 "4 9.4 (1.37) 0.01

3-4 1 X 10°4 8.7 (1.26) 0.03

3-7 1 X 10-4 9.1 (1.32) 0.03

3-11 1 X 10-4 8.9 (1.28) 0.02

Terminal Properties

3-3 1 X 10 -4 8.8 (1.28) 0.01

3-4 1 X 10 -4 7.9 (1.15) 0.04

3-7 1 X 10-4 8.8 (1.27) 0.03

3-11 1 X 10-4 8.6 (1.25) 0.02

3-3

3-4

3-7

3-11

Ultimate Properties

Time to Strength Strain
Failure (S22T), u
(tf),__ MPa (ksi) (_22T)

1 X I08 56 (8.2) 0.0060

1 X I08 57 (8.3) 0.0066

1 X 108 46 (6.8) 0.0052

1 X I08 54 (7.9) 0.0062
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TABLE4-14. INTERMEDIATESTRAINRATETENSILEPROPERTIESOF
[908] SP288/T300GRAPHITE/EPOXY

Specimen Strain Rate Modulus (E22),
Numbers (_22), s"I GPa (106 psi)

,Initial Properties,

44-5 18 26.9 (3.90)

44-6 20 30.5 (4.42)

44-7 18 28.8 (4.17)

Secant Properties

44-5 50 19.4 (2.81)

44-6 58 14.8 (2.14)

44-7 51 14.5 (2.1 O)

Terminal Properties

44-5 I00 26.9 (3.90)

44-6 116 14.8 (2.15)

44-7 105 11.9 (1.73)

Ultimate Properties

44-5

44-6

44-7

Time to Strength

Failure (S22T),

(tf), IJs MPa (ksi)

114 110.4 (16.0)

III 92.5 (13.4)

120 88.3 (12.8)

Poisson's
Ratio (v21)

Strain

(_2T)

0.0057

0.0064

0.0061
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TABLE4-15. HIGHSTRAINRATETENSILEPROPERTIESOF[908]
SP288/T300GRAPHITE/EPOXY

Specimen Strain Rate Modulus (E22), Poisson's
Numbers (_22), s -I GPa (106 psi) Ratio (_21)

Initial Properties

3-I 15 27.3 (3.95) --

3-2 I00 50.4 (7.30) --

3-5 140 31.6 (4.58) --

Secant Properties

3-I 89 21.7 (3.14) 0.04

3-2 202 22.7 (3.28) 0.02

3-5 197 23.7 (3.43) 0.06

Terminal Properties

3-I 225 12.4 (1.80) 0.04

3-2 360 13.8 (2.00) 0.05

3-5 330 15.0 (2.17) --

Ultimate Properties

Time to Strength Strain
Failure (S22T) , u
(tf), us MPa (ksi) (_22T)

3-I 89 169 (24.5) 0.0079

3-2 40 184 (26.6) 0.0081

3-5 35 164 (23.7) 0.0069
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Average results for the three ranges of strain rate investigated are tab-

ulated in Table 4-16. The initial and secant moduli increase sharply with

strain rate, reaching values more than twice the static modulus. The transverse

tensile strength follows a similar trend, increasing from 54 MPa (7.8 ksi)

under quasi-static loading to 172 MPa (24.9 ksi) under high strain rate loading.

The ultimate strain remains constant up to the intermediate rate level, but

shows a noticeable increase at high strain rates,

4.3.2 Graphite/Epoxy (SP288/AS) '

Quasi-static transverse properties were obtained by testing four

[908] rings. Stress-strain curves to failure, as well as modulus, Poisson's

ratio, strength, and ultimate strain, are shown in Figures 4-89 through 4-92.

Strains are linear up to stress levels of between 28 MPa (4 ksi) and 35 MPa

(5 ksi) corresponding to strains between 0.0030 and 0°0037. Results are com-

parable with those obtained using flat coupons except that strength values are

a little lower. Results are tabulated in Table 4-17.

Intermediate rate transverse properties were obtained by testing three

[908] rings using 650 mg of pistol powder in the pressure chamber. Strain

records are shown in Figures 4-93, 4-94, and 4-95. The corresponding dynamic

stress-strain curves are shown in Figures 4-96, 4-97, and 4-98. Results are

tabulated in Table 4-18. No Poisson's ratios were computed as the axial strain

records appeared erratic. The initial strain rates range between 28s-l and

33s"l and the secant strain rates between 39s "l and 50s"l. The times to failure

range between lO0 _s and 137 Us.

High strain rate properties were obtained by testing three [908] rings.

Specimen Nos. 5-9, 5-I0, and 5-11 were loaded with 260 mg pistol powder, a 50 mg

detonator, and a 20 mg PETN detonator, respectively. Strain and strain deriva-

tive records are shown in Figures 4-99 through 4-I07. The corresponding dynamic

stress-strain curves are shown in Figures 4-I08, 4-109, and 4-110. Results are

tabulated in Table 4-19. The initial strain rates vary between 25s -l and 120s-l

and the secant rates between 128s"l and 195s "l. The times to failure range

between 40 _s and 50 _So

Average results for the three ranges of strain rate investigated are tab-

ulated in Table 4-20. The initial and secant moduli increase sharply with

strain rate. At the highest rate the secant modulus is more than double the
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'TABLE 4-16. TRANSVERSE TENSILE PROPERTIES OF UNIDIRECTIONAL
SP288/T300 GRAPHITE/EPOXY AT VARIOUS STRAIN RATES

Specimen Strain Rate Modulus (E22), Poisson's
Numbers (_22), s -z GPa (106 psi) Ratio (_2z)

Initial Properties

3-3,4,7,11 1 X 10 -4 9.4 (1.36) 0.02

44-5,6,7 19 28.7 (4.16) --

3-1,2,5 85 36.4 (5.28) --

Secant Properties

3-3,4,7,11 1 X 10-4

44-5,6,7 53

3-I ,2,5 163

Terminal

3-3,4,7,11 1 X 10 -4.

44-5,6,7 107

3-I ,2,5 305

3-3,4,7,11

44-5,6,7

3-I ,2,5

9.0 (1.31) 0.02

16.2 (2.35) --

22.7 (3.28) 0.04

Properti es

8.5 (1.24) 0.03

17.9 (2.59) --

13.7 (1.99) 0.05

Ultimate Properties

Time to Strength Strain
Failure (S22T) , u
(tf), _s MPa (ksi) (C22T)

X 108 54 (7.8) 0.0060

115 97 (14.1) 0.0061

55 172 (24.9) 0.0076
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TABLE 4-17. QUASI-STATIC TENSILE PROPERTIES OF [908 ]
SP288/AS GRAPHITE/EPOXY

Specimen Strain Rate Modulus (E22), Poisson's
Numbers (_22), s -I GPa (IO s psi) Ratio (_21)

Initial Properties

4-3 1 X 10-4 9°8 (I.43)

5-5 1 X lO-4 I0.6 (1.54)

5-6 l X 10-4 I0.2 (I.48)

5-I0 l X lO"4 10.5 (I.52)

Secant Properties

4-3 l X lO-4 9.8 (1.43)

5-5 l X lO"4 I0.6 (1.54)

5-6 1 X lO-4 I0.2 (1.48)

5_I0 l X lO-4 I0.5 (1.52)

Terminal Properties

4-3 1 X 10-4 9.8 (1.43)

5-5 I X 10-4 10.6 (1.54)

5-6 1 X 10 -4 10.2 (1.48)

5-10 1 X 10 -4 10.5 (1.52)

0.02

0.03

0.03

0.03

0.02

0.03

0.03

0.03

0.02

0°03

0.03

0.03

4-3

5-5

5-6

5-10

Ultimate Properties

Time to

FaiIure

l XlO 8

l XlO 8

l XlO 8

l XlO 8

Strength

($22T),
MPa (ksi)

49 (7.2)

52 (7.6)

56 (8.2)
50 (7.3)

Strain
U

(_22T)

0.0051

0.0050

0.0057

0.0050
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TABLE 4-18. INTERMEDIATE STRAIN RATE TENSILE PROPERTIES OF

[908 ] SP288/AS GRAPHITE/EPOXY

Specimen Strain Rate Hodulus (E22), Poisson's

Numbers (_22), s"z GPa (I0° psi) Ratio (v21)

Initial Properties

38-7 33 16.0 (2.32)

38-9 29 23.6 (3°42)

38-I0 28 14.6 (2.11)

Secant Properties

38-7 50 11.7 (1.70)

38-9 47 16.1 (2.34)

38-10 39 19.7 (2.85)

Terminal Properties

38-7 96 16.8 (2.43)

38-9 69 19.2 (2.78)

38-I0 86 20.2 (2.93)

Ultimate Properties

Time to Strength
Failure (S22T),
(tf), ps MPa (ksi)

38-7 I00 59 (8.5)

38-9 Ill 83 (12.1)

38-I0 137 I04 (15.1)

Strain
U

(_22T)

0.0050

0.0052

0.0053
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TABLE 4-19. HIGH STRAIN RATE TENSILE PROPERTIES OF [908 ]
SP288/AS GRAPHITE/EPOXY

Specimen Strain Rate Poisson's
Numbers (_22), s -I Ratio (_21)

5-9

5-I 0

5-11

5-9

5-10

5-11

5-9

5-10

5-11

5-9

5-10

5-II

Initial

25

120

70

128

195

136

Secant

Terminal

220

300

210

Ultimate

Time to
Failure

(tf), ps

5O

4O

47

Modulus_(E22),
GPa (I0 psi)

Properties

28.6 (4.15)

42.8 (6.20)

52.6 (7.62)

Properties

24.8 (3.59)

18.9 (2.74)

19.2 (2.78)

Properties

23.8 (3.45)

9.7 (1.40)

mm

Properties

Strength
($22T),
MPa (ksi)

159 (23.0)

157 (22.8)

122 (17.8)

0.06

mm

0.05

m_

mm

Strain
U

(_22T)

0.0064

0.0078

0.0064
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TABLE4-20.
SP288/AS

Specimen
Numbers

4-3,5-5,6

38-7,9,10

5-9,10,II

4-3,5-5,6

38-7,9,10

5-9,10,11

4-3,5-5,6

38-7,9,10

5-9,10,11

4-3,5-5,6

38-7,9,10

5-9,10,11

TRANSVERSE TENSILE PROPERTIES OF UNIDIRECTIONAL
GRAPHITE/EPOXY AT VARIOUS STRAIN RATES

Strain Rate Modulus_(E22) ' Poisson's
(_22), s -I GPa (106 psi) Ratio (u21)

Initial Properties

1 X 10 -4 10.3 (I.'49) 0.03

30 18.1 (2.62) --

72 41.3 (5.99) 0.06

Secant Properties

1 X 10 -4 10.3 (1.49) 0.03

45 15.8 (2.30) --

153 21.0 (3.04) 0.05

Terminal Properties

X 10-4 10.3 (1.49) 0.03

84 18.7 (2.71) --

243 16.7 (2.43) --

Ultimate Properties

Time to
Failure

(tf), _s

1 X 10 8

116

46

Strength Strain
($22T), u
MPa (ksi) (_22T)

52 (7.6) 0.0052

82 (11.9) 0.0052

146 (21.2) 0.0069
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static modulus. The transverse tensile strength follows a similar trend, in-

creasing from 52 MPa (7.6 ksi) under quasi-static loading to 146 MPa (21.2 ksi)

under high strain rate loading. The ultimate strain increases somewhat at the

high strain rate, but it is believed that the differences observed are not

significant.

4.3.3 Graphite/S-Glass/Epoxy (80AS/20S/PR288)

Quasi-static transverse properties were obtained by testing three

[908] rings. Stress-strain curves to failure are shown in Figures 4-111, 4-112,
and 4-113. Strains are linear up to stress levels between 21MPa (3 ksi) and

31 MPa (4.5 ksi) corresponding to axial strains between 0.0015 and 0.003. There

is no explanation for the higher modulus of Specimen No. IA-4. It is probably

due to a higher local concentration of S-glass at the gage location. Results

are tabulated in Table 4-21.

Intermediate rate transverse properties were obtained by testing three

[908] rings using 650 mg of pistol powder in the pressure chamber. Strain

records are shown in Figures 4-114, 4-115, and 4-116. The corresponding dynamic

stress-strain curves are shown in Figures 4-117, 4-118, and 4-119. Results are

tabulated in Table 4-22. No Poisson's ratios were computed as the axial strain

records appeared erratic. The initial strain rates vary between 20s -I and 43s -I

and the secant strain rates between 30s -I and 65s "I. The times to failure range

between 46 _s and 68 _s.

High strain rate properties were obtained by testing three [908 ] rings.

Specimen Nos. IA-I and IA-2 were loaded with 130 mg and Specimen No. IA-3 with

260 mg of fast-burning pistol powder in the pressure chamber. Strain and strain

derivative records for the three hybrid rings and the steel calibration ring

are shown in Figures 4-120 through 4-128. The corresponding dynamic stress-

strain curves are shown in Figures 4-129, 4-130, and 4-131. Results are tab-

ulated in Table 4-23° Initial strain rates vary between 20s -I and 40s -I and

secant strain rates between 90s -I and 103s -I, not much higher than those achieved

for the intermediate rate tests. Times to failure range between 61 _s and

67 _s.
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TABLE4-21. QUASI-STATICTENSILEPROPERTIESOF[908]
80AS/20S/PR288GRAPHITE/S-GLASS/EPOXY

Specimen
Numbers

IA-4

IA-5

IA-6

IA-4

IA-5

IA-5

IA-4

IA-5

IA-6

IA-4

IA-5

IA-6

Strain Rate Modulus (E22),
I_22), s"I" GPa (106 psi)

Initial Properties

I X TO-4 13.8 (2.00)

1 X 10 -4 II.I (1.61)

I x I0 -4 I0.5 (1.52)

Secant Properties

1 X 10 -4 12.6 (1.82)

I x I0 -4 I0.5 (1.53)

1 X I0 -4 10.2 (1.48)

Terminal Properties

1 X 10-4 11.3 (1.64)

1 X 10-4 9.8 (1.42)

1 X 10-4 9.9 (1.44)

Ultimate Properties

Time to
Fail ure

(tf), _s

Strength
($22T),
MPa (ksi)

1 XlO 8

1 XlO 8

1 XlO 8

45 (6.5)

53 (7.7)

49 (7.1)

Poisson's

Ratio (_21)

0.02

0.03

0.02

0.01

0.03

0.02

0.01

0.02

0.03

Strain
U

(_22T)

0.0036

0.0050

0.0048
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TABLE4-22. INTERMEDIATESTRAINRATETENSILEPROPERTIES

OF[908] 80AS/20S/PR288GRAPHITE/S-GLASS/EPOXY

Specimen Strain Rate Modulus.(E22),
Numbers (_22), s"l GPa (I0° psi)

Initial Properties

39-4 43 24.1 (3.50)

39-5 30 30.0 (4.35)

39-6 20 24.1 (3.50)

Secant Properties

39-4 51 18.8 (2.72)

39-5 31 23.8 (3.45)

39-6 25 19.5 (2.82)

Terminal Properties

39-4 65 20.4 (2.95)

39-5 43 24.1 (3.50)

39-6 30 21.4 (3.10)

39-4

39-5

39-6

Ultimate Properties

Time to Strength Strain

Failure (S22-), u
(tf), _S MPa _ksi) (C22T)

46 44 (6.4) 0.0023

54 39 (5.7) 0.0016

68 33 (4.8) 0.0017

Poisson's
Ratio (_21)

/•
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TABLE 4-23. HIGH STRAIN RATE TENSILE PROPERTIES OF [908]
80AS/20S/PR288 GRAPHITE/S-GLASS/EPOXY

Specimen Strain Rate Modulus (E22), Poisson's
Numbers (_2_), s-I GPa _I0 _ psi) Ratio (_21)

Initial Properties

IA-I 40 37.6 (5.45) --

IA-2 40 46.7 (6.77) --

Ia-3 20 44.2 (6.41) --

IA-I I00

IA-2 103

IA-3 90

Secant Properties

23.3 (3.38)

28.6 (4.15)

31.9 (4.62)

Terminal Properties

IA-I 180 I0.0

IA-2 150 20.4

IA-3 190 15.5

Ultimate

Time to
Fa i I ure
(tf), ]Js

(1.45)

(2o95)

(2.25)

Properties

Strength
($22T),
MPa (ksi)

--m

_n

_m

--m

-l

Strain
u

(822 T)

IA-I

IA-2

IA-3

61

64

67

142 (20.6)

189 (27.4)

191 (27.7)

0.0061

0.0066

0.0060
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TABLE 4-24. TRANSVERSE TENSILE PROPERTIES OF UNIDIRECTIONAL
80AS/20S/PR288 GRAPHITE/S-GLASS/EPOXY AT VARIOUS STRAIN RATES

Specimen Strain Rate
Numbers (_22), s-I

Initial

IA-4,5,6 1 X 10 -4

39-4,5,6 31

IA-1,2,3 33

IA-4,5,6

39-4,5,6

IA-I ,2,3

Modulus (E2_), Poisson's

GPa (IO s psi) Ratio (v21)

Properties

II.8 (1.71) 0.02

26.1 (3.78) --

42.8 (6.21) --

IA-4,5,6

39-4,5,6

IA-1,2,3

Secant Properties

l X 10-4 ll.l (l.61)

36 20.7 (3.00)

98 27.9 (4.05)

Terminal Properties

X lO"4 I0.4 (I.50)

46 22.0 (3.18)

173 15.3 (2.22)

0.02

.m

0.02

IA-4,5,6

39-4,5,6

IA-I ,2,3

Ultimate Properties

Time to
Fail ure

(tf), lJs

1 XIO 8

56

64

Strength
($22T),
MPa (ksi)

49 (7.I)

39 (5.6)

174 (25.2)

Strain
U

(_22T)

0.0045

0.0019

0.0062
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Average results for the three ranges of strain rate investigated are tabu-

lated in Table 4-24. The initial and secant moduli increase sharply even for

the intermediate strain rates. The strength at the high strain rate is more

than three times the static strength, whereas the ultimate strain is only 44%

higher. In the case of the intermediate strain rate tests, the strength, as

well as the ultimate strain, are appreciably lower than corresponding static

values. This is not indicative of any trend, but is the result of premature

failures in the specimens cut from a different tube (Tube 34).

4.4 IN-PLANE SHEAR PROPERTIES

4.4.1 Graphite/Epoxy (SP288/T300)

Quasi-static in-plane shear properties were obtained by testing

four [106] rings under internal pressure. These rings, with the fibers at

lO-deg with the circumferential direction, were instrumented with 3-gage

rosettes. The gage elements were oriented in the circumferential direction,

in the axial direction, and at 45-deg with the circumferential direction. The

in-plane (along the fiber direction) shear stress and shear strain were deter-

mined from measured data as discussed in Section 3.3.2. Shear stress versus

shear strain curves are shown in Figures 4-132 through 4-135. Results are

tabulated in Table 4-25.

Intermediate rate in-plane shear properties were obtained by testing

three [106 ] rings using 650 mg of pistol powder in the pressure chamber. The

circumferential, axial, and 45-deg strains in the composite rings and the

circumferential strain in the steel calibration ring were recorded as shown

in Figures 4-136, 4-137, and 4-138. The corresponding dynamic shear stress

versus shear strain curves are shown in Figures 4-139, 4-140, and 4-141.

Results are tabulated in Table 4-26. The initial strain rates range between

16s -I and 27s "I and the secant rates between 37s -I and 69s -I. The times to

failure range between 125 _s and 187 Vs.

High strain rate in-plane shear properties were obtained by testing four

[106 ] rings. Specimen Nos. 17-7, 17-8, and 17-10 were loaded with I00 mg

PETN detonators and Specimen No. 17-9 with 455 mg of pistol powder in the

pressure chamber. Strain and strain derivative records for the three graphite/

epoxy rings and the steel calibration ring are shown in Figures 4-142 through

4-33



TABLE 4-25. QUASI-STATIC IN-PLANE SHEAR PROPERTIES
OF UNIDIRECTIONAL SP288/T300 GRAPHITE/EPOXY

Specimen Strain Rate
Number (_12), s-I

Shear Modulus (G12),

GPa (106 psi)

Initial Properties

17-I 1 X 10-4 7.1 (I.02)

17-2 1 X 10-4 6.3 (0.91)

17-3 1 X 10 -4 6.3 (0.91)

17-4 1 X 10 -4 5.5 (0.80)

Secant Properties

17-I 1 X 10 -4 5.0 (0.72)

17-2 1 X 10-4 3.5 (0.50)

17-3 1 X 10-4 3.0 (0.44)

17-4 1 X 10-4 3.6 (0.53)

Terminal Properties

17-I 1 X I0"4 3.1 (0.44)

17-2 1 X 10-4 1.7 (0.25)

17-3 1 X 10-4 1.5 (0.21)

17-4 1 X 10-4 2.0 (0.30)

Ultimate Properties

Time to Strength Strain

Failure (S12), ( u )
(tgf), IJs MPa ( ksi ) _I 2

1 X 108 66 (9.5) 0.0066

1 X 108 73 (10.6) 0.0105

1 X 108 73 (10.6) 0.0121

1 X 108 66 (9°5) 0.0090

17-I

17-2

17-3

17-4

L
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TABLE4-260 INTERMEDIATESTRAINRATEIN-PLANESHEAR
PROPERTIESOFUNIDIRECTIONALSP288/T300GRAPHITE/EPOXY

Specimen Strain Rate
Number• (_12), s-I

Initial Properties

Shear Modulus (G12),
GPa (106 psi)

57-2 24 6,0 (0.87)

57-3 27 6.4 (0.93)

57-5 16 6.3 (0.92)

Secant Properties

57-2 37 5.2 (0.75)

57-3 69 6.0 (0.87)

57-5 47 5.3 (0.76)

Terminal Properties

57-2 84 4.9 (0.70)

57-3 144 4.4 (0.63)

57-5 I18 4.6 (0.67)

57-2

57-3

57-5

Ultimate Properties

Time to Strength Strain
Failure ($12),
(___tf.),_s MPa (ksi) (_2)

187 72 (10.5) 0.0070

125 I03 (15.0) 0.0086

171 85 (12.4) 0.0081

i •
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4-153. The corresponding dynamic stress-strain curves are shown in Figures

4-154 through 4-157. Results are tabulated in Table 4-27. Initial strain rates

range between 284s "l and 292s"l for the three specimens loaded with PETN deto-

nators. The times to failure for the same three specimens range between 34 _s

and 39 Us. Strain rates for Specimen No. 17-9 fall between the high rate and

intermediate rate ranges. For this reason properties for this specimen were

not averaged with those of the other specimens.

Average results for the four ranges of strain rate investigated are tab-

ulated in Table 4-28. The initial shear modulus remains unchanged for the

static and intermediate rate conditions, but it increases sharply to more than

twice the static value at high strain rates. The secant shear modulus increases

more noticeably with strain rate, from 3.8 GPa (0.55 X lO6 psi) under static

conditions to 5°5 GPa (0.79 X lO6 psi) under intermediate and high rate condi-

tions. The in-plane shear strength increases with strain rate by up to 65%

over the static value. The ultimate shear strain shows a slight increase with

strain rate, from 0.0096 under static conditions to 0.0106 under high rate

conditions.

4.4.2 Graphite/Epoxy (SP288/AS)

Quasi-static in-plane shear properties were obtained by testing

three [lO8] rings under internal pressure as described before. Shear stress

versus shear strain curves are shown in Figures 4-158, 4-159, and 4-160. Results

are tabulated in Table 4-29°

Intermediate rate in-plane shear properties were obtained by testing three

[I08] rings using 650 mg of pistol powder in the pressure chamber. The circum-

ferential, axial, and 45-deg strains in the composite rings and the circumferen-

tial strain in the steel calibration ring were recorded as shown in Figures

4-161, 4-162, and 4-163. The corresponding dynamic shear stress versus shear

strain curves are shown in Figures 4-164, 4-165, and 4-166. Results are tab-

ulated in Table 4-30. The initial strain rates range between 7s"l and 25s-l

and the secant rates between 39s"l and 68s-l. The times to failure range between

180 us and 240 us.

High strain rate in-plane shear properties were obtained by testing three

[lO8] rings. Specimen Nos. 15-5 and 15-7 were loaded with 50 mg PETN detonators,
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TABLE 4-27. HIGH STRAIN RATE IN-PLANE SHEAR PROPERTIES
OF UNIDIRECTIONAL SP288/T300 GRAPHITE/EPOXY

Specimen Strain Rate
Number (_12), s-1

Initial Properties

17-7 136

17-8 150

17-9 ll9

17-10 180

Secant Properties

17-7 291

17-8 292

17-9 87

17-I 0 284

Terminal Properties

17-7 520

17-8 490

17-9 78

17-10 500

Ultimate Properties

17-7

17-8

17-9

17-I0

Time to
Failure

(_if_), _s

34

39

120

37

Strength
(S12),

MPa (ksi)

139 (20.2)

I13 (16.4)

I15 (16.6)

86 (12.4)

Shear Modulus (G12),
GPa (106 psi)

14.3 (2.07)

13.9 (2.02)

7.0 (1.02)

12.2 (I.78)

7.0 (I .02)

5.0 (0.72)

5.5 (O.8O)

4.1 (0.59)

6.3 (0.91)

2.4 (0.35)

8.8 (1.28)

0.9 (0.14)

Strain
U

(_12)

O. 0099

0.0114

0. Ol 04

0.0105

/
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TABLE 4-28. IN-PLANE SHEAR PROPERTIES OF UNIDIRECTIONAL
SP288/T300 GRAPHITE/EPOXY AT VARIOUS STRAIN RATES

Specimen Strain Rate Shear Modulus (G12),
Number (_12), s-I GPa (106 psi)

Initial Properties

17-1,2,3,4 1 X 10-4 6.3 (0.91)

57-2,3,5 22 6.3 (0_91)

17-9 119 7.0 (1.02)

17-7,8,10 155 13.5 (1.96)

Secant Properties

17-1,2,3,4 l X lO-4 3.8 (0.55)

57-2,3,5 51 5.5 (0.79)

17-9 87 5.5 (0.80)

17-7,8,10 289 5.4 (0.78)

Terminal Properties

17-1,2,3,4 1 X 10 -4 2.1 (0.30)

57-2,3,5 I15 4.6 (0.67)

17-9 78 8.8 (1.28)

17-7,8,10 503 3.2 (0.47)

Ultimate Properties

17-I ,2,3,4

57-2,3,5

17-9

17-7,8,10

Time to Strength Strain

Failure (S12), (_2)
(tf), IJs MPa (ksi)

1 X 108 69 (I0.I) 0.0096

161 87 (12.6) 0.0079

120 115 (16.6) 0.0104

37 113 (16.3) 0.0106
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TABLE 4-29. QUASI-STATIC IN-PLANE SHEAR PROPERTIES
OF UNIDIRECTIONAL SP288/AS GRAPHITE/EPOXY

Specimen Strain Rate
Number (_12), S-1

Initial Properties

Shear Modulus (G12),
GPa (106 psi)

15-2 1 X 10-4 5.5 (0.79)
f

15-3 l X 10-4 6.0 (0.88)

15-4 1 X 10-4 6.8 (0.98)

Secant Properties

15-2 1 X 10-4 3.2 (0.46)

15-3 1 X 10 -4 3.2 (0.47)

15-4 l X lO"4 3.1 (0.45)

Terminal Properties

15-2 1 X 10 -4 1.6 (0.24)

15-3 l X lO-4 1.3 (0.20)

15-4 1 X 10-4 1.3 (0.19)

Ultimate Properties

Time to Strength Strain
Failure (S12), U

(tf_), _s MPa ( ksi ) (Cl 2 )

15-2 l X 108 83 (12.1) 0.0131

15-3 1 X 108 86 (12.5) 0.0133

15-4 1 X 108 90 (13.1) 0.0146

>

/
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TABLE4-30. INTERMEDIATESTRAINRATEIN-PLANESHEAR
PROPERTIESOFUNIDIRECTIONALSP288/ASGRAPHITE/EPOXY

Specimen Strain Rate
Number (_12), S'1

Initial Properties

15-9 25

15-I0 13

15-11 7

Shear Modulus (G12),
GPa (106 psi)

6.6 (0.96)

5.7 (0.82)
6.0 (0.88)

15-9

15-10

15-11

Secant Properties

68

61

39

4.7 (0.68)

4.3 (0.63)

4.7 (0.68)

15-9

15-10

15-11

Terminal Properties

I14

19O

96

2.7 (0.39)

4.1 (0.59)

3.5 (0.51)

15-9

15-10

15-11

Ultimate Properties

Time to
Fail ure

(tL), us

Strength
(S12),

MPa (ksi)

180

235

24O

114 (16.5)

125 (18.1)

89 (12.9)

Strain

(_2)

0.0122

0.0143

0.0094
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and Specimen No. 15-8 with a I00 mg PETN detonator in the pressure chamber.

Strain and strain derivative records for the composite and steel calibration

rings are shown in Figures 4-167 through 4-175, The corresponding dynamic

stress-strain curves are shown in Figures 4-176, 4-177, and 4-178. Results are

tabulated in Table 4-31. The initial strain rates range between 140s -I and

170s -I and the secant rates between 223s -I and 282s -I. The times to failure

range between 40 Us and 47 _s.

Average results for the three ranges of strain rate investigated are tab-

ulated in Table 4-32° The initial shear modulus remains essentially unchanged

for the static and intermediate rate conditions (6.1 GPa; 0.89 X 106 psi), but

it increases to 8.3 GPa (1.21 X 106 psi) under high strain rate loading. The

secant modulus increases more noticeably with strain rate, from 3.2 GPA (0.46

X 106 psi) under static conditions to 5.2 GPa (0.76 X 106 psi) under high rate

conditions. The shear strength shows a similar trend, although not as pronounced.

The ultimate shear strain decreases with strain rate from 0.0137 under static

conditions to 0.0108 under high rate conditions.

4.4.3 Graphite/S-Glass/Epoxy (80AS/20S/PR288)

Quasi-static in-plane shear properties were obtained by testing

three [106] rings under internal pressure as described before. Shear stress

versus shear strain curves are shown in Figures 4-179, 4-180, and 4-181.

Results are tabulated in Table 4-33.

Intermediate rate in-plane shear properties were obtained by testing three

[10.6] rings using 650 mg of pistol powder in the pressure chamber. Recorded

strains are shown in Figures 4-182, 4-183, and 4-184+ The corresponding dynamic

shear stress versus strain curves are shown in Figures 4-185, 4-186, and 4-187.

Results are tabulated in Table 4-34. The initial strain rates vary between
-I

lls and 19s -I and the secant rates between 33s "I and 66s -I The times to

failure range between 134 _s and 203 _s.

High strain rate in-planeshear properties were obtained by testing three

[106 ] rings+ Specimen Nos. 18-5 and 18-8 were loaded with I00 mg PETN detona-

tors, and Specimen No. 18-6 with 455 mg of pistol powder in the pressure

chamber. Strain and strain derivative records for the three hybrid rings and

the steel calibration ring are shown in Figures 4-188 through 4-196. The
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TABLE 4-31. HIGH STRAIN RATE IN-PLANE SHEAR PROPERTIES
OF UNIDIRECTIONAL SP288/AS GRAPHITE/EPOXY

Specimen Strain Rate
Number (_12), s-Z

Initial Properties

Shear Modulus (G12),
GPa (106 psi)

15-5 170 7.08 (1.03)

15-7 140 10.09 (1.46)

15-8 160 7.80 (I.13)

Secant Properties

15-5 223 5.34 (0.77)

15-7 230 4.77 (0.69)

15-8 282 5.56 (0.81)

Terminal Properties

15-5 380 3.1! (0.45)

15-7 500 3.71 (0.54)

15-8 660 3.64 (0.53)

15-5

15-7

15-8

Ultimate Properties

Time to Strength Strain

Failure (Sl2), (_2)
(tf), _Js MPa (ksi)

47 ll2 (16.3) 0.0105

46 lO0 (14.6) 0.0106

40 126 (18.2) 0.0113
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TABLE 4-32. IN-PLANE SHEAR PROPERTIES OF UNIDIRECTIONAL
SP288/AS GRAPHITE/EPOXY AT VARIOUS STRAIN RATES

Specimen Strain Rate Shear Modulus (G12),
Numbers (_12), s -i GPa (106 psi)

Initial Properties

15-2,3,4 1 X 10-4 6.1 (0.88)

15-9,10,11 15 6.1 (O.89)

15-5,7,8 157 8.3 (1.21)

Secant Properties

15-2,3,4 1 X 10 -4 3.2 (0.46)

15-9,10,11 56 4.6 (0.66)

15-5,7,8 245 5.2 (0.76)

Terminal Properties

15-2,3,4 1 X 10 -4 1.4 (0.21)

15-9.10.11 133 3.4 (0.50)

15-5,7,8 513 3.5 (0.51)

Ultimate Properties

Time to Strength Strain

Failure (Si2), (_U2)l
(tmf_), IJs MPa ( ksi )

15-2,3,4 1 X 108 87 (12.6) 0.0137

15-9,10,11 218 109 (15.8) 0.0120

15-5,7,8 44 113 (16.4) O.OT08

,
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TABLE4-33. QUASI-STATICIN-PLANESHEARPROPERTIES
OFUNIDIRECTIONAL80AS/20S/PR288GRAPHITE/S-GLASS/EPOXY

Specimen Strain Rate
Number (_12), s-1

Initial Properties

18-2 l X lO"4

18-3 l X IO"4

18-4 l X lO-4

Shear Modulus (G12),

GPa (106 psi)

8.2 (I .18)
i

6.6 (0.95)

6.0 (0°87)

18-2

18-3

18-4

Secant Properties

1 XlO -4

1 XIO "4

1 XlO -4

4.8 (0.69)

4.O (0.57)

4.2 (0.61)

18-2

18-3

18-4

Terminal Properties

1 XIO -4

1 XIO -4

1 XIO "4

2.7 (0.39)

2.1 (0.30)

2.6 (0.38)

::i ¸

ii!_

18-2

18-3

18-4

Ultimate Properties

Time to Strength Strain
Failure (S12), u

(t f), lJs MPa (ksi) (_12)

1 X 108 66 (9.5) 0.0069

1 X 108 69 (I0.I) 0.0088

1 X 108 64 (9.3) 0.0076
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TABLE4-34. INTERMEDIATESTRAINRATEIN-PLANESHEARPROPERTIES
OFUNIDIRECTIONAL80AS/20S/PR288GRAPHITE/S-GLASS/EPOXY

Specimen Strain Rate
Number. (_12), s-I

Initial Properties

Shear Modulus (G12),
GPa (106 psi)

18-9 II 10.8 (1.56)

18-10 13 8.6 (1.25)

18-II 19 6.8 (0.99)

Secant Properties

18-9 55 5.9 (0.86)

18-10 33 6.9 (I .00)

18-11 66 5.5 (0.80)

Terminal Properties

18-9 170 3.6 (0.53)

18-I0 83 5.8 (0.83)

18-II 150 3.8 (0.56)

18-9

18-10

18-11

Ultimate Properties

Time to Strength Strain
Failure (Sl2), u
(tf_), _s MPa (ksi) (_12)

175 115 (16.7) 0.0097

203 93 (13.4) 0.0067

134 97 (14.1) 0.0089
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corresponding dynamic stress-strain curves are shown in Figures 4-197, 4-198,

and 4-199. Results are tabulated in Table 4-35. Initial strain rates vary

between ll2s-l and 220s-l and secant strain rates between 90s-l and 240s-l.

The times to failure range between 32 _s and 75 _s. The lowest secant rate

and the longest failure time correspond to Specimen No. 18-6 which was loaded

with the slower burning explosive.

Average results for the three ranges of strain rate investigated are tab-

ulated in Table 4-36. The initial shear modulus increases at the intermediate

and high strain rates by approximately the same amount. The secant shear

modulus increases at the intermediate rate, but not so much at the high strain

rates. The in-plane shear strength shows a similar trend, increasing sharply

at the intermediate rates, but only moderately at the high strain rates. The

ultimate shear strain shows some variations with strain rate which may not be

significant.

L

4.5 COMPRESSIVE PROPERTIES

4.5.1 Compression Fixture

Dynamic compressive properties of unidirectional composites were

obtained by testing rings under dynamic external pressure. A new test system

was designed and fabricated for this purpose. Components of this fixture and

the assembled fixture are shown in Figures 4-200, 4-201, and 4-202. A cross

section of the assembled fixture is shown in Figure 4-203.

Figure 4-200 shows the arbor for holding the test and calibration ring

specimens inside the fixture. It is a short cylinder with a base diameter

approximately equal to that of the ring specimens, i.e., lO.16 cm (4 in.).

This arbor has a reduced diameter section with a threaded end. The composite

and steel calibration specimens are supported on the shoulder of the base

section and held in place by means of a retaining ring shown in Figure 4-200b.

The arbor has radial holes in the reduced section at the specimen location

which connect to an axial central hole extending to the bottom of the arbor.

These passages serve to vent the space inside the ring specimen to atmosphere

and are used to take the leads out from the strain gages inside the specimens.

The arbor with the specimens is attached to a base flange plate as shown in

Figure 4-201.
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TABLE 4-35. HIGH STRAIN RATE IN-PLANE SHEAR PROPERTIES
OF UNIDIRECTIONAL 80AS/20S/PR288 GRAPHITE/S-GLASS/EPOXY

Specimen Strain Rate
Number• (_12), s -I

Initial Properties

18-5 175

18-6 112

18-8 220

Shear Modulus (G12),
GPa (106 psi)

7.9 (I.15)

9.9 (1.43)

9.5 (l.38)

18-5

18-6

18-8

Secant Properties

228

90

24O

5.7 (0.83)

5.0 (0.72)

5.3 (0.77)

18-5

18-6

18-8

Terminal Properties

27O

88

255

3.8 (0.56)

4.9 (0.71)

3.9 (0.56)

18-5

18-6

18-8

Ultimate Properties

Time to Strength Strain
Failure (Sl2), u
(t f_), _s MPa (ksi) (c12)

32 83 (12.0) 0.0073

75 67 (9.8) 0.0067

32 82 (11.9) 0.0077

i
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TABLE4-36. IN-PLANESHEARPROPERTIESOFUNIDIRECTIONAL
80AS/20S/PR288GRAPHITE/S-GLASS/EPOXYAT VARIOUSSTRAINPATES

Specimen Strain Rate
Numbers (_12), s'1

Initial Properties

Shear Modulus (G12),

GPa (]06 psi)

18-2,3,4 1 X lO-4 6°9 (Io00)

18-9,10,II 14 8.7 (l.27)

18-5,6,8 169 9.1 (1.32)

Secant Properties

18-2,3,4 1 X 10-4 4.3 (0.62)

18-9,10,11 51 6.1 (0.89)

18-5,6,8 186 5.3 (0.77)

Terminal Properties

18-2,3,4 l X 10-4 2.5 (0.36)

18-9,10,II 134 4.4 (0.64)

18-5,6,8 204 4.2 (0.61)

18-2,3,4

18-9,10,11

18-5,6,8

Ultimate Properties

Time to Strength Strain
Failure (S12), u

(tz), _______ssMPa (ksi) (_12)

l X lO8 66 (9.6) 0.0078

171 102 (14.7) 0.0084

46 78 (11.2) 0.0072
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A cone wave deflector is threaded to the arbor over the specimens and

retaining ring (Figure 4-202). This cone helps to guide the pressure wave in

the surrounding liquid so that a uniform dynamic pressure is generated on the

outside of the ring specimens. The assembly of the arbor with the specimens

and cone deflector is enclosed in a pressure chamber of 15.24 cm (6 in.)

diameter (Figure 4-202). A smaller diameter extension of this chamber at the

top contains the detonator which initiates the pressure wave in the fluid filled

chamber.

4.5.2 Longitudinal Compressive Properties

Quasi-static longitudinal compressive properties were obtained

using the IITRI compression fixture with 15-plies thick coupon specimens as

described in Section 2.2. Results for the two graphite/epoxy and the hybrid

materials are incorporated in Tables 2-7, 2-8, and 2-9.

Dynamic compressive properties of SP288/T300 graphite/epoxy were obtained

by testing [06] rings under dynamic external pressure in the fixture described

above. Four rings were loaded dynamically using a 1.56 g mixture of pistol

powder, potassium perchlorate, and aluminum dust in the pressure chamber.

Strains in the composite and steel calibration rings, obtained from strain

gages mounted on the inside surface of these rings, were recorded in every

case. Strain and strain derivative records for the four rings above (Specimen

Nos. 19-8, 19-9, 40-I, and 40-2) are shown in Figures 4-204 through 4-215.

These data were analyzed following the procedures described earlier for dynamic

tensile tests. Dynamic stress-strain curves obtained by the digital processing

oscilloscope are shown in Figures 4-216 through 4-219.

Results for the four graphite/epoxy specimens above are tabulated in

Table 4-37. The initial and secant moduli of 150.6 GPa (21.8 X 106 psi) and

135.2 GPa (19o6 X 106 psi), respectively, are not appreciably different from

the static modulus of 145 GPa (21.1 X 106 psi). This is because the strain

rates achieved in these tests are not very high, ranging from 15s -I to 93s -I.

The secant Poisson's ratio of 0.35 is somewhat higher than the static value of

0.30. The average dynamic strength of 1175 MPa (170 ksi) is lower than the

static compressive strength of 1297 MPa (188 ksi) obtained by testing small

coupons with the IITRI compression fixture. The difference may be due to the

4-49



TABLE 4-37. HIGH STRAIN RATE COMPRESSIVE PROPERTIES OF [06]
SP288/T300 GRAPHITE/EPOXY

Specimen Strain Rate Modulus (E_%), Poisson's
Number (_11), s"I GPa (lO6 psl) Ratio (_12)

initial Properties

19-8 20 132.0 (19.1) --

19-9 15 164.6 (23.9) 0.50

40-I 30 147.3 (21.4) --

40-2 25 157.7 (22.9) 0.32

secant Properties

19-8 93 142.8 (20.7) --

19-9 84 146.3 (21.2) 0.35

40-I 80 135.4 (19.6) --

40-2 93 I16.8 (16.9) 0.35

Terminal Properties

19-8 80 180.1 (26.1) --

19-9 I00 115.6 (16.8) 0.55

40-I I00 112.8 (16.4) --

40-2 I00 86.9 (12.6) 0.66

Ultimate Properties

Time to Strength Strain

Failure ($ii (_IC)
"tf) ,__ MPa _si)

19-8 96 1277 (I_5) 0.0089

19-9 lO0 1216 (175) 0.0083

40-I 97 1070 (155) 0.0079

40-2 105 1139 (165) 0.0098
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different methods of testing, as there was no evidence of buckling of the

6-ply rings under dynamic external pressure. The average dynamic ultimate

strain of 0.0088 is also lower than the static value of 0.0114, following the

same trend as the strength values,

Attempts were made to increase the strain rate in these tests, by shortening

the distance between detonator and specimen and by using more powerful deto-

nators (PETN). However, the strain rates did not increase noticeably. They

appear to be governed by the specimen layup and the dimensions of the pressure

chamber.

Dynamic compressive properties of SP288/AS graphite/epoxy were obtained

in a similar manner as described above. Strain and strain derivative records

for the three rings tested (Specimen Nos. 45-2, 45-3, and 45-4) are shown in

Figures 4-220 through 4-228. These data were analyzed as discussed before.

Dynamic stress-strain curves are shown in Figures 4-229, 4-230, and 4-231.

They show more nonlinearity than corresponding static stress-strain curves.

Results for the three graphite/epoxy specimens above are tabulated in Table

4-38. The initial and secant moduli are 179.2 GPa (26.0 X 106 psi) and 122.8

GPa (17.8 X 106 psi), which are respectively higher and lower than the static

modulus of 137 GPa (19.9 X 106 psi)° The average initial Poisson's ratio of

0.34 is somewhat higher than the static value of 0.32. The secant and terminal

values of Poisson's ratio do not appear to be reliable as they are affected by

the unexplainable sharp increase in axial strain at later times. The average

dynamic compressive strength of 1219 MPa (177 ksi) is very close to the static

compressive strength of 1235 MPa (179 ksi) obtained by testing small coupons

with the IITRI compression fixture. The average dynamic ultimate strain of

0.0101 is lower than the static value of 0.0108. The longitudinal dynamic

properties, in general, are not appreciably different from quasi-static proper-

ties with the exception of the initial modulus. This is probably due to the

relatively lower strain rates achieved.

4.5.3 Transverse Compressive Properties

Quasi-static transverse compressive properties were obtained using

the IITRI compression fixture with 15-plies thick coupon specimens as described

in Section 2.2. Results for the two graphite/epoxy and the hybrid materials

are incorporated in Tables 2-7, 2-8, and 2-9.

4-51



TABLE 4-38.

Specimen
Number

45-2

45-3

45-4

45-2

45=3

45-4

45-2

45-3

45-4

45-2

45-3

45-4

HIGH STRAIN RATE COMPRESSIVE PROPERTIES OF

[06] SP288/AS GRAPHITE/EPOXY

Strain Rate
s"I

Modulus (E_),
GPa (I0 ° p_)

Initial Properties

Poisson's

Ratio (_12)

20 169.1 (24.5) 0.32

20 158.7 (23.0) 0,43

20 209.8 (30.4) 0.27

Secant Properties

87 llO.l (16.0) 0.43

80 I15.6 (16.8) 0.30

73 142.3 (20,6) 0.46

Terminal Properties

170 89.7 (13.0) --

120 117.3 (17.0) 0.49

lO0 I17.3 (17o0) --

Ultimate Properties

Strength Strain

(Sll), ( u
MPa _ksi) _]IC )

1233 (179) O,Oll3

1225 (178) 0.0106

I195 (173) 0.0084

Time to
Fa i Iure

(__t_tf),__

130

130

115
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Dynamic compressive properties of SP288/T300 graphite/epoxy were obtained

by testing [908] rings under dynamic external pressure in the fixture described

above. Three rings were loaded dynamically using a 1.56 g mixture of pistol

powder, potassium perchlorate, and aluminum dust in the pressure chamber.

Strains in the composite and steel calibration rings, obtained from strain

gages mounted on the inside surface of these rings, were recorded in every

case. Strain and strain derivative records for the three rings above (Specimen

Nos. 44-I, 44-3, and 44-4) are shown in Figures 4-232 through 4-240. These

data were analyzed following the procedures described earlier for dynamic

tensile tests. Dynamic stress-strain curves obtained by the digital processing

oscilloscope are shown in Figures 4-241, 4-242, and 4-243.

Results for the three graphite/epoxy specimens above are tabulated in

Table 4-39. The initial and secant moduli of 34.5 G_a (5.00 X lO6 psi) and

18.5 GPa (2.68 X lO6 psi), respectively, are much higher than the static modulus

of I0.4 GPa (I.50 X lO6 psi). The average dynamic strength of 393 MPa (57.0

ksi) is also higher than the static strength of 251MPa (36 ksi). The average

secant Poisson's ratio of 0.03 is close to the static value of 0.02. The

dynamic ultimate strain of 0.0213 is appreciably lower than the static ultimate

strain of 0.0336.

Dynamic compressive properties of SP288/AS graphite/epoxy were obtained

by testing three [908] rings in a similar manner as described before. Strain

and strain derivative records for the three rings above (Specimen Nos. 38-I,

38-2, and 38-3) are shown in Figures 4-244 through 4-252. These data were

analyzed following the procedures described earlier for dynamic tensile tests.

Dynamic stress-strain curves obtained by the digital processing oscilloscope

are shown in Figures 4-253, 4-254, and 4-255.

Results for the three graphite/epoxy specimens above are tabulated in

Table 4-40. The initial and secant moduli of 28.5 GPa (4.12 X lO6 psi) and

18.4 GPa (2.66 X lO6 psi), respectively, are much higher than the static modulus

of I0.7 GPa (I.56 X lO6 psi). The average dynamic strength of 362 MPa (52.2

ksi) is also higher than the static strength of 244 MPa (35 ksi). The average

Poisson's secant ratio of 0.033 is close to the static value of 0.03. The

dynamic ultimate strain of 0.0198 is much lower than the static ultimate strain

of 0.0317.
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TABLE 4-39. HIGH STRAIN RATE COMPRESSIVE PROPERTIES OF

[908] SP288/T300 GRAPHITE/EPOXY

Specimen Strain Rate Modulus (E22), Poisson's
Number (E22), s-I GPa (106 psi) Ratio (_21)

Initial Properties

44-I 25 29,0 (4,20) --

44-3 25 30.6 (4.43) --

44-4 35 44.0 (6.37) --

Secant Properties

44-I 229 18.3 (2.65) 0.02

44-3 219 15.2 (2.20) 0.03

44-4 228 22.0 (3,18) 0.03

Terminal Properties

44-I 450 14.1 (2,05) 0.09

44-3 450 14.8 (2.15) 0.08

44-4 510 9.5 (1.37) 0.12

Ultimate Properties

Time to

Failure

( t f__l_

44-I 95 398 (57.7)

44-3 95 315 (45.7)

44-4 93 466 (67.5)

Strength Strain

($22G) , ( u
MPa (ksi) _22C)

0.0218

0.0208

0.0212
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TABLE4-40. HIGHSTRAINRATECOMPRESSIVEPROPERTIESOF
[908] SP288/ASGRAPHITE/EPOXY

Specimen Strain Rate Modulus (E221, Poisson's
Number (_22), s'1 GPa (IO s psi} Ratio (_21)

Initial Properties

38-I 25 27.6 (4.00) 0.04

38-2 20 29.3 (4.25) --

38-3 35 ....

Secant Properties

38-I 215 17.7 (2.56) 0.03

38-2 196 17.3 (2.50) 0.04

38-3 219 20.2 (2.93) 0003

Terminal Properties

38-I 450 I0.0 (1.45) 0.I0

38-2 400 10.7 (1.55) 0.09

38-3 480 7.9 (1.15) 0.08

38-I

38-2

38-3

Ultimate Properties

Time to
Fail ure

(tf__l___

Strength Strain
($22_), u
MPa (ksi) (C22C)

1O0

99

85

376 (54.5) 0.0215

335 (48.5) 0.0194

376 (54.5) 0.0186
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Dynamic compressive properties of [908] 80AS/20S/PR288 graphite/S-glass/

epoxy were obtained similarly as those of the graphite/epoxy materials above.

Strain and strain derivative records for the three hybrid rings tested (Specimen

Nos. 39-I, 39-2, and 39-3) are shown in Figures 4-256 through 4-264. Dynamic

stress-strain curves are shown in Figures 4-265, 4-266, and 4-267.

Results for the three hybrid specimens above are tabulated in Table 4-41.

The initial and secant moduli of 55.0 GPa (7.98 X lO6 psi) and 28.5 GPa

(4.14 X lO6 psi), respectively, are much higher than the static modulus of

ll.8 GPa (l.71 X lO6 psi). The average dynamic strength of 305 MPa (44.1 ksi)

is also much higher than the static strength of 166 MPa (24 ksi). The dynamic

ultimate strain of O.Olll is lower than the static ultimate strain of 0.0157.

Attempts were made to increase the strain rate in the compression tests

above by shortening the distance between detonator and specimen and by using

more powerful detonators (PETN). However, the strain rates did not increase

noticeably. They appear to be governed by the specimen layup and the dimensions

of the pressure chamber°
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TABLE 4-41. HIGH STRAIN RATE COMPRESSIVE PROPERTIES OF [908 ]
80AS/20S/PR288 GRAPHITE/S-GLASS/EPOXY

Specimen Strain Rate Modulus (E22), Poisson's
Number (E22), s"I GPa (106 psi) Ratio (_21)

Initial Properties

39-I 50 57.4 (8.31)

39-2 20 58.5 (8.47)

39-3 20 49.3 (7.15)

Secant Properties

39-I 180 22.0 (3.19)

39-2 135 26.9 (3.89)

39-3 102 36.7 (5.33)

Terminal Properties

39-I 500 6.0 (0.87)

39-2 250 14.1 (2.05)

39-3 200 29.9 (4.33)

Ultimate Properties

m_

m--

_m

39-I

39-2

39-3

um

-m

m--

0.II

Time to Strength Strain

Failure ($22_ _si u(tf) ,_s MPa { ) (_22C)

75 297 (43.0)

83 301 (43.6)

84 316 (45.8)

0.0135

0.0112

0.0O86
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5o SUNMARYAND CQNCLUSIONS

Experimental methods and procedures were developed for testing and charac-

terization of unidirectional and angle-ply composite laminates over a wide

range of strain rates.

The following three materials were selected for strain rate characteriza-

tion:

(I) SP288/T300 graphite/epoxy

(2) SP288/AS graphite/epoxy

(3) 80AS/20S/PR288 graphite/S-glass/epoxy.

These materials, in unidirectional form, were fully characterized under static

conditions using standard coupon specimens and procedures.

The specimen geometry selected was a ring 10o16 cm (4 in.) in diameter,

2°54 cm (I in°) wide, and 6 to 8 plies thick loaded under internal pressure.

These specimens were cut from composite tubes fabricated in a manner producing

a material of the same properties as those of flat laminates cured in an auto-

clave. Quality control procedures using thickness measurements, destructive

testing, and ultrasonic inspection were employed.

A method was developed for testing thin ring specimens at strain rates up

to approximately 500s-lo Ring specimens were loaded by an internal or external

pressure pulse applied explosively through a liquid in specially designed

fixtures. The specimen forms part of a fluid-filled pressure chamber. The

pressure pulse was produced by detonating an explosive in the pressure chamber.

Strain rates were varied by varying the explosive charge. Strains from strain

gages mounted on the composite specimen and a steel calibration ring were

recorded with a digital processing oscilloscope. Data analysis was based on a

numerical solution of the equation of motion° A computer program was written

involving smoothing and approximations of the strain data, strain rate, and

strain acceleration. In all cases results were presented in the form of

stress-strain curves to failure and properties determined included initial,
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secant, and terminal strain rates; initial, secant, and terminal modulus and

Poisson's ratio; and strength and ultimate strain.

In the first phase of the program described in this volume unidirectional

properties were determined of the three materials mentioned before at three

strain rates° The strain rates investigated were quasi-static, intermediate,

and high rates ranging from lO'4s "I to over 500s-l. Longitudinal, transverse,

and in-plane shear unidirectional properties were determined by testing ring

specimens with their fibers oriented at O-deg, 90-deg, and lO-deg with the

circumferential direction. Stress-strain curves to failure were obtained in

all cases.

Results for longitudinal tensile properties are tabulated in Tables 4-4,

4-8, and 4-12 of the preceding section. The modulus (initial and secant)

increases with strain rate up to approximately 20% at the highest rate in the

case of the SP288/AS material. The variation of the ratio of dynamic to

static modulus with strain rate is illustrated graphically in Figure 5-I. All

three materials follow the same trend° The only scatter is due to the uncer-

tainty of determining accurately the initial modulus at the high strain rates.

The tensile strength and ultimate tensile strain did not show any significant

variations with strain rate.

Results for transverse tensile properties are tabulated in Tables 4-16,

4-20, and 4-24 of the preceding section. The secant modulus increases sharply

with strain rate reaching values two to two and one-half times the static

value. The initial modulus increases even more sharply but displays considerable

scatter because of some uncertainty in its determination. The variation of

the ratio of dynamic to static transverse secant modulus with strain rate is

illustrated graphically in Figure 5-2° Each point on the curves represents

the average of three tests. The three materials show different rates of

modulus increase. The modulus of the hybrid material increases more than that

of SP288/T300, which in turn shows a larger increase in modulus than the

SP288/AS material. The strength increases with strain rate somewhat more

sharply than the modulus reaching values of approximately three times the

static values at the high strain rates. The ultimate transverse tensile strain

does not vary significantly up to the intermediate strain rate, however, it

5-2
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increases by 25 to 44% for all three materials. This result is related to the

fact that the strength increases faster than the modulus with increasing strain

rate°

Results for in-plane shear properties are tabulated in Tables 4-28, 4-32,

and 4-36 of the preceding section. Both initial and secant moduli increase

noticeably with strain rate for all three materials by up to approximately

65%. The variation with strain rate of the ratio of dynamic to static shear

modulus is illustrated in Figure 5-3. Considerable scatter is evident. The

shear strength increases with strain rate in approximately the same proportion

as the modulus. No clearcut trend was evident with regard to the ultimate

shear strain. A slight increase (10%) was noticed in the SP288/T300 material,

and a noticeable decrease (26%) in the SP288/AS material at the high strain

r_te. The hybrid material showed increased ultimate strain at the intermediate

rate and a reduced ultimate strain at the high rate°

Compressive, longitudinal properties were obtained for the two graphite/

epoxy materials over a narrower range of strain rate, up to approximately

90s -I. The initial longitudinal modulus was higher than the static value, and

the secant modulus was approximately the same as the static modulus. The dy-

namic strength was equal or slightly lower than the static strength for the

two graphite/epoxy materials. The dynamic ultimate strain was somewhat lower

than the static value.

Compressive transverse properties were obtained for all three materials

investigated at strain rates up to approximately 500s -I. The dynamic initial

and secant moduli for the two graphite/epoxy materials are approximately three

and two times the static value, respectively. In the case of the hybrid

material the dynamic moduli were even higher, 2°4 to 4°6 times the static. This

may be attributed in part to the higher strain rate dependence of the glass/

epoxy component of the hybrid material° The dynamic to static strength ratio

for the two graphite/epoxy materials is approximately Io5, whereas for the

hybrid material it is Io8. In all three materials the dynamic ultimate com-

pressive strain is approximately two-thirds of the static ultimate strain.
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